
Visualization
Claudius Gräbner-Radkowitsch

2024-04-19

Table of contents

1 Packages used 1

2 Developing a ggplot - the general workflow 1

3 An alternativ line plot 17

4 Saving your plot 21

1 Packages used

library(DataScienceExercises)
library(ggplot2)

2 Developing a ggplot - the general workflow

Make a shortcut to the data and inspect it:

gdp_data <- DataScienceExercises::gdplifexp2007
head(gdp_data, 3)

country continent lifeExp pop gdpPercap
1 China Asia 72.961 1318683096 4959.115
2 India Asia 64.698 1110396331 2452.210
3 United States Americas 78.242 301139947 42951.653

Plots in ggplot2 are created layer by layer. We now go through each step that, in the
end, will produce the following plot:

Tutorial: Visualization 2

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

Africa Americas Asia Europe Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

We start by creating the basic ggplot2 object, which is best thought of as a fancy list.
To this end we use the function ggplot2::ggplot()

gdp_plot <- ggplot2::ggplot()
typeof(gdp_plot)

[1] "list"

When we call this list, the plot described by it gets rendered:

gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 3

Of, course, there is no plot since the list is basically empty. All the specifications in the
ggplot2::ggplot() function are best thought of as default values. In our case we fist
specify the data set we use for our plot:

gdp_plot <- ggplot2::ggplot(
data = gdp_data

)

But this alone does not do anything good. We also need to inform ggplot2 on how it
should map the variables from the data set onto the plot. In a first step, lets clarify that
the variable gdpPercap should be mapped on the x-axis and the variable lifeExp on
the y-axis.

This is done via the argument mapping and the function ggplot2::aes(), which takes
as arguments the aesthetics of the plot and the variable names that should be plotted
on them:

gdp_plot <- ggplot2::ggplot(
data = gdp_data,
mapping = ggplot2::aes(
x = gdpPercap,
y = lifeExp

)
)
gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 4

40

50

60

70

80

0 10000 20000 30000 40000 50000
gdpPercap

lif
eE

xp

This looks better. Note that ggplot2 chooses a default range for the axes based on the
range of the variables in the underlying data set:

min(gdp_data$lifeExp); max(gdp_data$lifeExp)

[1] 39.613

[1] 82.603

min(gdp_data$gdpPercap); max(gdp_data$gdpPercap)

[1] 277.5519

[1] 49357.19

We now want to add an additional layer with data points on our plot. Poits are so called
geom: a certain geometrical object representing data points. The function to add points
is called ggplot2::geom_point() amd we literally just add it to our plot:

gdp_plot <- gdp_plot + geom_point()
gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 5

40

50

60

70

80

0 10000 20000 30000 40000 50000
gdpPercap

lif
eE

xp

This already reveals much of the general workflow involved in creating a plot: define
a raw object and add and refine layers. Looking at the plot above, one thing that is
missing is that the dots are filled in different colors, representing the continents of the
countries, and the size of the dots represent the population size of the countries.

To achieve this we need to map the variable continent from the data set to the aesthetic
color in the plot, and the variable pop to the aesthetic size:

gdp_plot <- ggplot2::ggplot(
data = gdp_data,
mapping = ggplot2::aes(
x = gdpPercap,
y = lifeExp,
size = pop,
color = continent
)

) +
ggplot2::geom_point()

gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 6

40

50

60

70

80

0 10000 20000 30000 40000 50000
gdpPercap

lif
eE

xp
pop

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

continent

Africa

Americas

Asia

Europe

Oceania

What is not so nice is that the points are partly overlapping and bigger points might
conceal smaller points below them. To address this problem we might make the plots
a bit transparent. Since this is not a mapping from a variable from the data set to an
aesthetic, but a general setting that should apply to all points equally, we do not specify
it via the argument aes, but via the parameter responsible for transparency directly.
This parameter is called alpha and we can set it for the affected geom directly:

gdp_plot <- ggplot2::ggplot(
data = gdp_data,
mapping = ggplot2::aes(
x = gdpPercap,
y = lifeExp,
size = pop,
color = continent
)

) +
ggplot2::geom_point(alpha=0.5)

gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 7

40

50

60

70

80

0 10000 20000 30000 40000 50000
gdpPercap

lif
eE

xp
pop

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

continent

Africa

Americas

Asia

Europe

Oceania

But now there is the danger for points to ‘melt into each other’. Better have their circle
in black, and only color their interior. We can do so by replacing color in the aesthetics
with fill, and set the color explicitly to 'black'. However, this distinction between
circle color and fill color is not available for all kind of point shapes. You need to search
the internet for a shape that supports this distinction. If you looked, for instance, here
you found that they shape with index 21 allows this:

gdp_plot <- ggplot2::ggplot(
data = gdp_data,
mapping = ggplot2::aes(
x = gdpPercap,
y = lifeExp,
size = pop,
fill = continent
)

) +
ggplot2::geom_point(
shape=21, color="black", alpha=0.5)

gdp_plot

Data Science Using R - Spring Semester 2024

https://r-graphics.org/recipe-scatter-shapes#discussion-28
https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 8

40

50

60

70

80

0 10000 20000 30000 40000 50000
gdpPercap

lif
eE

xp
pop

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

continent

Africa

Americas

Asia

Europe

Oceania

Progress cannot be denied! Now lets fix the labels and annotations of the plot. Here,
the function ggplot2::labs() comes in handy. It accepts arguments such as title,
subtitle, captio, and several more. The help() function gives further information
about the possibilities.

In our case we want to add a title, specify the x and y axis, and add a caption:

gdp_plot <- gdp_plot +
ggplot2::labs(
title = "Life expectancy and income per capita",
caption = "Note: size of bubbles represents population. Data: Gapminder",
x = "GDP per capita (int. Dollar)",
y = "Life expectancy in years"

)
gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 9

40

50

60

70

80

0 10000 20000 30000 40000 50000
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

pop

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

continent

Africa

Americas

Asia

Europe

Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

So far, so good. The x-axis is a bit clumsy, though. It would be better to scale the number
down so that it shows 1000 dollars. The scale properties of the axes can be defined by
the functions scale_*_**(), where the first * should be replaced by the aesthetic we
want to adjust, and the second by a keyword indicating whether the variable is discrete
or continuous, or whether we want to provide fully manual specifications. In our case
we are interested in changing the x-axis, which represents a continuous variable (GDP).
Thus we call scale_x_continuous(). Since we want to change the labels on the axis
we specify the argument labels. To scale the labels we make use of a function from
the scales-package: scales::number_format(). And to make this clear on the axis
we add the suffix ‘k’:

gdp_plot <- gdp_plot +
ggplot2::scale_x_continuous(
labels = scales::number_format(scale = 0.001, suffix = "k")
)

gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 10

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

pop

2.50e+08

5.00e+08

7.50e+08

1.00e+09

1.25e+09

continent

Africa

Americas

Asia

Europe

Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

Now lets turn to the legends. First of all we want to remove the legend for the bubble
size since, first, the mapping of the bubble size is not straightforward to understand and,
second, we already indicated that the bubble size represents population in the caption
of the plot. There are several ways to to this: either we use the scale_*_*() function
we already encountered with the argument guide="none":

gdp_plot + ggplot2::scale_size_continuous(guide = "none")

Or we use a function that allows us to specify all kinds of legend properties:
ggplot2::guides(). Here we take the aesthetic name as an argument and set it to
´“none”‘:

gdp_plot <- gdp_plot + ggplot2::guides(size = "none")
gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 11

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

continent

Africa

Americas

Asia

Europe

Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

The advantage of using ggplot2::scale_size_continuous() would be that we could
strech the limits a bit to make the differences more straightforward to see:

gdp_plot <- gdp_plot +
ggplot2::scale_size_continuous(
guide = "none",
range = c(0.1, 24)
)

Now we want to put the remaining legend to the bottom of the plot. Again, there are
several ways to achieve this, but for such specific changes the function ggplot2::theme()
is usually a good option. It allows us to change almost everything on a plot. The
argument to place legends at the bottom is legend.position and already hints at
the internal logic of theme(), which you might explore through the help() function
yourself:

gdp_plot <- gdp_plot +
ggplot2::theme(legend.position = "bottom")

gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 12

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

continent Africa Americas Asia Europe Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

Since the theme() function is so extensive there are also many pre-defined themes for
plots, which are best explored in the internet. A good default one is the black-and-white
theme, which we can use via ggplot2::theme_bw():

gdp_plot <- gdp_plot +
ggplot2::theme_bw()

gdp_plot

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

continent

Africa

Americas

Asia

Europe

Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

Oups, while everything looks nicer, some of our previous changes, such as moving the leg-

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 13

end to the bottom and removing its title were overwritten! It, thus, makes always sense
to first call the default theme, and then make further changes via ggplot::theme().

Of course, we can then also make further adjustments to the theme, e.g. by removing
the panel of the plot. Removing elements of the plot via ggplot2::theme() requires us
to set these elements via the function ggplot2::element_blank():

gdp_plot <- gdp_plot +
ggplot2::theme_bw() +
theme(
legend.position = "bottom",
panel.border = ggplot2::element_blank()

)
gdp_plot

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

continent Africa Americas Asia Europe Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

Hm, but it would indeed be a bit nicer to keep the axis lines of the x- and y-axis. Lets
do this by specifying them explicitly via ggplot2::element_line(), which again allows
for endless specification details:

gdp_plot <- gdp_plot +
ggplot2::theme(
axis.line = ggplot2::element_line(colour = "grey"))

gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 14

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

continent Africa Americas Asia Europe Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

Its time to get picky! The ticks of the values should have the same color as the axis
lines!!!

gdp_plot <- gdp_plot +
ggplot2::theme(
axis.ticks = ggplot2::element_line(colour = "grey"))

gdp_plot

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

continent Africa Americas Asia Europe Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

Okay, you should get the general idea. What is more worrisome, to be honest, is the

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 15

ugly title of the legend. Away with it!

gdp_plot <- gdp_plot +
ggplot2::theme(legend.title = ggplot2::element_blank())

gdp_plot

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

Africa Americas Asia Europe Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

So, the only thing that distinguishes our plot from the initial example is the color pallette.
There are many different pallettes available, you can search for your favorite one in the
internet. Here we use one provided by the package RColorBrewer, which can be used
for the fill-aesthetic direclty:

gdp_plot <- gdp_plot +
ggplot2::scale_fill_brewer(palette = "Dark2")

gdp_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 16

40

50

60

70

80

0k 10k 20k 30k 40k 50k
GDP per capita (int. Dollar)

Li
fe

 e
xp

ec
ta

nc
y

in
 y

ea
rs

Africa Americas Asia Europe Oceania

Life expectancy and income per capita

Note: size of bubbles represents population. Data: Gapminder

Thats it! This was, of course, only a tiny glimpse on what you can achieve using
ggplot2, but it should suffice for the start. Moreover, what is more important, you
learned about the general workflow when developing a plot: start with creating a list
with ´ggplot2::ggplot()‘ and then adjust your plot layer by layer until you are satisfied.

Here is the whole code we used for the figure:

gdp_plot <- ggplot2::ggplot(
data = gdp_data,
mapping = ggplot2::aes(
x = gdpPercap,
y = lifeExp,
size = pop,
fill = continent

)
) +

ggplot2::geom_point(
shape=21, color="black", alpha=0.5) +

ggplot2::labs(
title = "Life expectancy and income per capita",
caption = "Note: size of bubbles represents population. Data: Gapminder",
x = "GDP per capita (int. Dollar)",
y = "Life expectancy in years"

) +
ggplot2::scale_x_continuous(
labels = scales::number_format(scale = 0.001, suffix = "k")

) +
ggplot2::scale_size_continuous(
guide = "none",

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 17

range = c(0.1, 24)
) +
ggplot2::scale_fill_brewer(
palette = "Dark2"
) +

ggplot2::theme_bw() +
ggplot2::theme(
legend.position = "bottom",
legend.title = ggplot2::element_blank(),
panel.border = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "grey"),
axis.ticks = ggplot2::element_line(colour = "grey")

)

Of course, for simple exploratory analysis, you do not need so many details as we just
did, but for publication purposes its good to know how far you can get!

Another great thing is that the syntax remains largely the same, no matter whether you
want to make a scatter plot as above, or a line graph or a histogram. All that changes
is the particular geom_*() function used.

3 An alternativ line plot

To illustrate the similarities of the code used for a different plot type, we will now
use a data set that is very similar to the one used previously, only this time we have
observations for GDP per capita and life expectancy for several years, aggregated
for the different continents. The data set is gain made available via the package
DataScienceExercises:

gdp_data_agg <- DataScienceExercises::aggGDPlifexp

Again, we first inspect the data to get a feeling about the variables that are present:

head(gdp_data_agg, 3)

A tibble: 3 x 5
continent year lifeExp pop gdpPercap
<fct> <int> <dbl> <dbl> <dbl>

1 Africa 1952 39.1 4570010. 1253.
2 Africa 1957 41.3 5093033. 1385.
3 Africa 1962 43.3 5702247. 1598.

Lets plot the dynamics of GDP per capita over time for the different continents. We
can now simply copy-paste a lot of the code we have used before. Lets start with the
uncontroversial beginning and just replace the name of the data set and the variable
names:

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 18

gdp_dyn_plot <- ggplot2::ggplot(
data = gdp_data_agg, # <- Replaced
mapping = ggplot2::aes(
x = year, # <- Replaced
y = gdpPercap, # <- Replaced
color = continent#,
#fill = continent # <- Not necessary

)
) +

ggplot2::geom_point()
gdp_dyn_plot

0

10000

20000

30000

1950 1960 1970 1980 1990 2000
year

gd
pP

er
ca

p

continent

Africa

Americas

Asia

Europe

Oceania

This is not so bad! But it would be nice to add an additional geom that connects the
dots with lines. No problem, simply add ggplot2::geom_line() to the plot:

gdp_dyn_plot <- gdp_dyn_plot +
geom_line()

gdp_dyn_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 19

0

10000

20000

30000

1950 1960 1970 1980 1990 2000
year

gd
pP

er
ca

p

continent

Africa

Americas

Asia

Europe

Oceania

Much of the code above only requires slight adjustments: the scaling of the x-axis
should now be applied to the y-axis so we change ggplot2::scale_x_continuous()
into ggplot2::scale_y_continuous(). Moreover, colors should change not for
the fill but the color aesthetic, so ggplot2::scale_fill_brewer() becomes
ggplot2::scale_color_brewer():

gdp_dyn_plot <- gdp_dyn_plot +
ggplot2::scale_y_continuous(
labels = scales::number_format(scale = 0.001, suffix = "k")

) +
ggplot2::scale_color_brewer(
palette = "Dark2"
)

gdp_dyn_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 20

0k

10k

20k

30k

1950 1960 1970 1980 1990 2000
year

gd
pP

er
ca

p

continent

Africa

Americas

Asia

Europe

Oceania

Aside from this, we can pretty much re-use almost the entire code from above with which
we adjusted the legend, the labels, as well as the overall theme, only we can be so bold to
remove the title of the x-axis via axis.title.x = ggplot2::element_blank(). More-
over, since we do not map the population size, ggplot2::scale_size_continuous()
can now be removed, resulting in:

gdp_dyn_plot <- gdp_dyn_plot +
labs(
title = "The divergence of income per capita",
caption = "Note: country data averaged over continants. Data: Gapminder",
y = "GDP per capita (int. Dollar)"

) +
ggplot2::theme_bw() +
theme(
legend.position = "bottom",
legend.title = ggplot2::element_blank(),
panel.border = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "grey"),
axis.ticks = ggplot2::element_line(colour = "grey"),
axis.title.x = ggplot2::element_blank()

)
gdp_dyn_plot

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Visualization 21

0k

10k

20k

30k

1950 1960 1970 1980 1990 2000

G
D

P
 p

er
 c

ap
ita

 (
in

t.
D

ol
la

r)

Africa Americas Asia Europe Oceania

The divergence of income per capita

Note: country data averaged over continants. Data: Gapminder

Again, a very nice plot - and much faster to complete than the first one, thanks to the
amazingly consistent syntax of ggplot2:)

4 Saving your plot

You can save your plot using the function ggplot2::ggsave(). The function saves,
by default, the last plot you created, but it is better to specify the plot you want to
save directly. Other important arguments are the file name (which also determines the
format), and the size:

ggplot2::ggsave(
plot = gdp_plot,
filename = "gdp_plot.pdf",
width = 6, height = 4.2)

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

	Packages used
	Developing a ggplot - the general workflow
	An alternativ line plot
	Saving your plot

