
Fundamental object types in R II:
Vectors

Claudius Gräbner-Radkowitsch

2024-03-28

Table of contents

1 Overview 1

2 Vectors 2
2.1 Atomic vectors . 2
2.2 Lists . 18

1 Overview

We already learned that everything in R that exists is an object. You most likely noted
that there are different types of objects: 2, for instance, was a number, but assign
was a function.1 As you might have guessed, there are many more types of objects. To
understand the fundamental object types in R is an essential prerequisite to master more
complicated programming challenges than those we have encountered so far. Thus, this
post is among those that will introduce you to the most important object types that you
will encounter in R.

These data types are summarized in the following figure:

FunctionsVectors

ListsAtomic vectors

logical integer double character

numeric

1In fact, we will learn below that 2 is not really a number, but a vector or length 1. Only in a next
step, 2 counts as a ‘number’, or, more precisely as a ‘double’.

Tutorial: Vectors 2

This post will be about the most common types of vectors. See the previous post for a
treatment of functions, and the upcoming one for more advanced types of vectors, such
as factor, matrix, and data.frame.

2 Vectors

Vectors are the most important object type in R - almost all data that we will work
with in R are vectors of some sort. Within the class of vectors, the most important
distinction is that between atomic vectors and lists, which are sometimes also called
generic vectors.2 Both atomic vectors and lists consist of one or more other objects.
What distinguishes the two is that while atomic vectors are composed only of objects of
the same type, lists can comprise objects of different types.

2.1 Atomic vectors

This makes it easy to classify atomic vectors in more detail: we usually say that the type
of atomic vector is the type of the object it encompasses. Four major types of atomic
vectors in this sense exist:

• logical (logical values): there are only two relevant logical values: TRUE und
FALSE3

• integer (whole numbers): this type should be self-explanatory. Less intuitive
is the rule that in order to define an integer in R you need to type the number
followed by the letter L such that R interprets the number as an integer.4 Examples
are 1L, -400L or 10L.

• double (decimal numbers): these should be self-explanatory as well. Examples are
1.5, 0.0, or -500.32.

• Whole and decimal numbers are often summarized in the category numeric. How-
ever, the use of numeric is almost always confusing, and many functions show
counter-intuitive behavior when this category is used. I recommend you to never
use it.

• character (words): these can contain all kinds of tokens and are characterized by
the fact that they always start and end with " (or '). Examples would be "Hello",
"500" or "1_2_Three".

As indicated above, an atomic vector only comprises elements of the same type. In this
context, we should mention, however, the at first sight ‘strange’ data type NA, which

2The only object type that is of relevance to us aside these two is NULL. We will learn about it during
the end of this post.

3While you can abbreviate the two with T and F, respectively, I recommend against using these some-
times ambiguous abbreviations.

4This syntax has historical reasons: when the type integer was introduced in R, the developers were
guided by the type long integer of the programming language C. In C the suffix for such an integer
was ‘l’ or ‘L’. The R developers just transferred this practice into R, only they did not use ‘i’ to avoid
a possible confusion between ‘l’ and ‘i’, which look very similar in many fonts (the suffix ‘i’ in R is
used for the imaginary component of complex numbers).

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 3

denotes a missing value:5 whenever an element of a vector is missing, e.g. when the
vector is used to store observations of subjects that have participated in an experiment,
and for some subjects the observation is missing, we will use NA.6

2.1.1 Testing and coercing types

In the following we will study the different types of atomic vectors and their typical
behavior in more detail. But before doing so we should introduce the function typeof():
it helps us to identify the type of an object in the first place. To see how, lets call the
function with the object (or the name of the object) we are interested about:

typeof(2L)

[1] "integer"

x <- 22.0
typeof(x)

[1] "double"

There is also a family of functions that allows us to test whether an object is actual of
a certain type or not. The general syntax here is is.*(). For instance:

x <- 1.0
is.integer(x)

[1] FALSE

is.double(x)

[1] TRUE

This function always returns an object of type logical:

y <- is.double(x)
typeof(y)

5In principle there are different kinds of missing values, such as NA_integer_ or NA_character_, but
they are irrelevant in practice: any NA value in an atomic vector automatically ‘mimics’ the type of
the atomic vector.

6NULL on the other hand, is used to represent an absent vector, not an absent element of a vector. We
will come back to NULL during the end of the post.

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 4

[1] "logical"

We can also try to transform objects from one type into another. We call this process
‘coercion’ an the general syntax is as.*()*. For instance:

x <- "2"
print(

typeof(x)
)

[1] "character"

x <- as.double(x)
print(

typeof(x)
)

[1] "double"

Such a transformation is, however, not always possible:

as.double("Hello")

Warning: NAs introduced by coercion

[1] NA

Since R does not know how to turn the word ‘Hello’ into a decimal number, it transforms
it into a ‘missing value’ - NA.

For the basic types discussed above there is a logical hierarchy of feasible transformations:
logical → integer → double → character, meaning that you can always transform
a decimal number into a word, but not vice versa.

Transgression: Why change the types of objects anyway? Data types
are extremely important for a programming language because otherwise it
would remain unclear how mathematical operations could be applied to dif-
ferent objects such as numbers or words. You will transform objects yourself
especially when you want to use a certain operation that is only defined for
a certain type of object, and the object you are dealing with has been stored
as a different type. This can happen, for example, when you read in data or
translate words into numerical values yourself. If unexpected errors occur in
your code with cryptic error messages, it is always a good idea to check the
types of the objects used and transform them if necessary.

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 5

x <- 2
y <- as.character(x)
print(y)

[1] "2"

z <- as.double(y) # This works
print(z)

[1] 2

k <- as.double("Hallo") # This does not work

Warning: NAs introduced by coercion

print(k)

[1] NA

When transforming logical values, TRUE counts as 1 and FALSE as 0, a fact that will come
in handy later on:

x <- TRUE
as.integer(x)

[1] 1

y <- FALSE
as.integer(y)

[1] 0

Since it is not always clear when R issues a warning for transformations that are incom-
patible with the hierarchy just introduced and when it does not, you should always be
cautious!

Moreover, transformations might change the properties of the transformed objects im-
plicitly in unexpected ways. For instance, a transformation from a decimal number to a
whole number can lead to unexpected rounding behavior:

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 6

x <- 1.99
as.integer(x)

[1] 1

Another example is the following:

z <- as.logical(99)
print(z)

[1] TRUE

Such implicit changes of the object properties do not necessary come with a warning
message, so one should always be careful when transforming objects!

In many cases, functions do the necessary transformations of their arguments automati-
cally. In most cases this is very practical:

x <- 1L # Integer
y <- 2.0 # Double
z <- x + y
typeof(z)

[1] "double"

But it can be dangerous in some cases as well.

When adding up logical values they are transformed to numbers:

x <- TRUE
y <- FALSE
z <- x + y # TRUE counts as 1, FALSE as 0
print(z)

[1] 1

This is useful if you want to know, for instance, how many elements of a vector meet a
certain logical criterion:

x <- c(1,2,3,4,5)
sum(x > 3)

[1] 2

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 7

In all these cases it is very important to stay informed about the types of objects you are
dealing with. To help you out, the following table contains an overview over the most
important transformation and test functions:

Type Test Transformation
logical is.logical as.logical
double is.double as.double
integer is.integer as.integer
character is.character as.character
function is.function as.function
NA is.na NA
NULL is.null as.null

A final remark on scalars: with scalar we usually refer to ‘single numbers’, such as 2.
There is no such concept in R: 2 is a vector with one element (or: of length 1). Thus,
we do not distinguish the type of a vector with or more than one elements.

Note: As you might have guessed already, we use the function c() to create longer
vectors:

x <- c(1, 2, 3)
x

[1] 1 2 3

We can also use this function to concatenate vectors:

x <- 1:3 # Shortcut for: x <- c(1, 2, 3)
y <- 4:6
z <- c(x, y)
z

[1] 1 2 3 4 5 6

Since atomic vectors can only contain objects of the same type, one might expect the
following code, which tries to concatenate objects of different types, to produce an er-
ror:

x <- c(1, "Hallo")

But this is not what happens! R transforms the objects according to the hierarchy
discussed above:
logical → integer → double → character. Due to the absence of errors or warning
messages, such operations are a regular source for mistakes.

Note: The length of a vector corresponds to its numbers of elements. We can ‘measure’
its length using the function length():

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 8

x = c(1, 2, 3)
len_x <- length(x)
len_x

[1] 3

Transgression: How large can an integer become? In R, objects of
type integer are stored as 32-bit files. This means that for each single
integer, 32 bits of storage are available on your computer. This implies
that really large numbers cannot be stored as integers, simply because the
32 bits are not sufficient:

x <- 2147483647L
typeof(x)

[1] "integer"

y <- 2147483648L
typeof(y)

[1] "double"

As you can see, the largest number that we can store as 32-bit integer is
2147483647. Larger numbers must be stored as double. The drawback of
saving numbers in this type is, however, the risk of a loss of precision. If
you want to avoid this you could try to save an integer as a 64 bit integer.
This possibility has been added to R later to save large numbers as integers
(something that happens faster than you think). To do so we must use the
package7 bit64:

z <- bit64::as.integer64(2147483648)
bit64::is.integer64(z)

[1] TRUE

Because this is a data type that has been added to R later, several functions do
not work with 64-bit integers if the package bit64 is not installed. Moreover,
several standard functions return very irritating outputs:

typeof(z)

[1] "double"
7If you are not sure what a package is, recap the last chapter of the post on first steps in R.

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 9

For this reason, and because bit64 is not part of the standard installation of
R, you should avoid storing large numbers as integer64 whenever possible.
Very large numbers should be stored as double or, when precision is a serious
issue, you should scale them down and then save them as integer.

2.1.2 Logical operations

The logical values TRUE and FALSE are often the result of logical operations, such as ‘Is
2 larger than 1?’. Such logical operations occur very frequently and its a good idea to
familiarize yourself with the logical operators. You can find an overview in the following
table:

Operator Function in R Example
larger > 2>1
smaller < 2<4
equal == 4==3

larger or equal >= 8>=8
smaller or equal <= 5<=9

not equal != 4!=5
and & x<90 & x>55
or | x<90 | x>55

either or xor() xor(2<1, 2>1)
not ! !(x==2)

is true isTRUE() isTRUE(1>2)

The result of such logical operations is always a logical value:

x <- 4
y <- x == 8
typeof(y)

[1] "logical"

You may also test longer vectors:

x <- 1:3
x<2

[1] TRUE FALSE FALSE

Tests can also be chained:

x <- 1L
x>2 | x<2 & (is.double(x) & x!=0)

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 10

[1] FALSE

Since many mathematical operations interpret TRUE as 1, it is easy to check how often
a certain condition is met:

x <- 1:50
smaller_20 <- x<20
print(

sum(smaller_20) # How many elements are smaller then 20?
)

[1] 19

print(
sum(smaller_20/length(x)) # Whats the share of these elements?

)

[1] 0.38

2.1.3 Vectorization

The chained operation we just saw is an example for vectorizing an operation. This means
that the same operation is applied to many elements, all of which are concatenated as a
vector. For instance, if you want to compute the square root of the numbers 5, 6 and 7
you could do:

sqrt(5)

[1] 2.236068

sqrt(6)

[1] 2.44949

sqrt(7)

[1] 2.645751

Or you vectorize the operation:

sqrt(c(5,6,7))

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 11

[1] 2.236068 2.449490 2.645751

Vectorizing operations is very useful since it speeds up the computations considerably.
Vectorized operations are far more efficient and faster than applying the operation to
each element of the vector separately. Thus, whenever you need to apply a certain
operation more than once you should always think about using vectorization.8

2.1.4 More on words

Words are distinguished by the fact that their beginning and their end gets indicated by
the symbol ' or ":

x <- "Hello"
typeof(x)

[1] "character"

y <- 'Bye!'
typeof(y)

[1] "character"

Just as other kinds of atomic vectors, they can by concatenated using c():

z <- c(x, "und", y)
z

[1] "Hello" "und" "Bye!"

A useful function in this context is paste(), which transforms and combines elements
of several vectors:

x <- 1:10
y <- paste("Try nb.", x)
y

[1] "Try nb. 1" "Try nb. 2" "Try nb. 3" "Try nb. 4" "Try nb. 5"
[6] "Try nb. 6" "Try nb. 7" "Try nb. 8" "Try nb. 9" "Try nb. 10"

The function paste() also accepts an optional argument sep, which allows us to specify
a token that should be placed between the elements to be combined (the default is sep="
"):

8We learn more about this later in the course when delving into the topic of iteration.

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 12

day_nr <- 1:10
x_axis <- paste("Day", day_nr, sep = ": ")
x_axis

[1] "Day: 1" "Day: 2" "Day: 3" "Day: 4" "Day: 5" "Day: 6" "Day: 7"
[8] "Day: 8" "Day: 9" "Day: 10"

*Note**: Here we have an example of what is called ‘recycling’. since the
vector c("Day") was shorter than the vector day_nr, c("Day") is simply
copied so that the operation with paste() makes sense. Recycling is useful,
but sometimes it can be harmful, namely when you think that you are using
two vectors of the same length, but this is actually not the case. In such
a case recycling leads to the fact that no error message is printed and the
fact that the two vectors are not of the same length remains unnoticed An
example of this is the following code, in which the intention is clearly to
connect all weekdays to numbers and one weekday was simply forgotten:

days <- paste("Tag ", 1:7, ":", sep="")
day_names <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
paste(days, day_names)

[1] "Tag 1: Monday" "Tag 2: Tuesday" "Tag 3: Wednesday" "Tag 4: Thursday"
[5] "Tag 5: Friday" "Tag 6: Saturday" "Tag 7: Monday"

2.1.5 Missing values and NULL

As indicated above, missing values are encoded as NA. This is particularly useful in
statistical contexts, where are particular element of a vector cannot simply be removed
if it is unavailable.

Example: The vector x contains a logical value that indicates whether a
person has correctly answered the question on a questionnaire. If the per-
son did not answer the third question on the questionnaire, this should be
indicated by NA. Simply omitting the value makes it impossible to determine
afterwards which question the person did not answer.

Most operations that get NA as an input will also give NA as an output, because it is
unclear what the result of the operation would be for different values for for the missing
value:

5 + NA

[1] NA

The only exception is an operation that yields a certain value completely independent
from what you would substitute for NA:

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 13

NA | TRUE # Always TRUE, no matter what you substitute for NA

[1] TRUE

To test whether a vector x contains missing values you should always use the function
is.na, never x==NA:

x <- c(NA, 5, NA, 10)
print(x == NA) # Unclear since not clear whether all NA must stand for the same value

[1] NA NA NA NA

print(
is.na(x)

)

[1] TRUE FALSE TRUE FALSE

Whenever an operation yields a value that cannot be defined, the result is not NA but
NaN (not a number):

0 / 0

[1] NaN

Another special element is NULL. NULL is in fact a data type in itself (i.e. it is not a
vector), but in practice its best thought of as a vector of length zero:

x <- NULL
length(x)

[1] 0

NULL is frequently used to indicate that something does not exist. An empty vector, for
instance, is NULL:

x <- c()
x

NULL

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 14

length(x)

[1] 0

This is different to a vector with one (or more) missing elements:

y <- NA
length(y)

[1] 1

When you define your own functions, you might use NULL as the default value for optional
arguments. We will learn about such more advanced strategies later in this course. For
now, its best to think of NULL as an vector of length zero.

2.1.6 Indexing and replacement

We can extract single elements of a vector using squared brackets:

x <- c(2,4,6)
x[1]

[1] 2

This also allows us to modify specific elements:

x <- c(2,4,6)
x[2] <- 99
x

[1] 2 99 6

But we can also extract more than one element:

x[1:2]

[1] 2 99

Negative indices eliminate the respective elements:

x[-1]

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 15

[1] 99 6

To get the last element of a vector you might combine this idea with the function
length():

x[length(x)]

[1] 6

2.1.7 Useful functions when working with atomic vectors

Here we shall mention a few functions that are particularly useful in the context of atomic
vectors,9 especially when it comes to producing such vectors or to perform arithmetic
operations with them.

Creating atomic vectors:

A sequence of whole numbers is something that we use very frequently. To create such
sequences, the shortcut : comes in handy:

x <- 1:10
x

[1] 1 2 3 4 5 6 7 8 9 10

y <- 10:1
y

[1] 10 9 8 7 6 5 4 3 2 1

To build more complex sequences we can use seq(), which in its simplest case is equiv-
alent to ::

x <- seq(1, 10)
print(x)

[1] 1 2 3 4 5 6 7 8 9 10

The function seq(), however, allows for a number of useful optional arguments. For
instance, by allows us to control the space between the numbers:

9For many common tasks there is already a predefined function in R. The easiest way to find them is
by googling

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 16

y <- seq(1, 10, by = 0.5)
print(y)

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
[16] 8.5 9.0 9.5 10.0

If we want to specify the desired length of the resulting vector and let R choose the
necessary space between the elements, we may use length.out:

z <- seq(2, 8, length.out = 4)
print(z)

[1] 2 4 6 8

And if we want to create a vector with the length as another vector, the argument
along.with comes in handy. This is often used for creating index vectors.10 In such a
case we do not have to specify the index numbers directly:

z_index <- seq(along.with = z)
print(z_index)

[1] 1 2 3 4

Another common task is to repeat a certain vector. This can be done with rep():

x <- rep(NA, 5)
print(x)

[1] NA NA NA NA NA

Operations

There are a number of operations that we use very frequently together with vectors.
Often we are interested in the length of a vector. For this we can use the function
length():

x <- c(1,2,3,4)
length(x)

[1] 4

If we are looking for the largest and smallest value of a vector we can use min() and
max():

10An index vector x to any vector y with N elements contains the integers from 1 to N. The nth value of
x thus corresponds to the index of the nth value of y.

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 17

min(x)

[1] 1

max(x)

[1] 4

Both functions (and many more similar functions) have the optional argument na.rm,
which can be either TRUE or FALSE. In the case of TRUE, all NA values are removed before
the operation gets applied:

y <- c(1,2,3,4,NA)
min(y)

[1] NA

min(y, na.rm = TRUE)

[1] 1

The mean or the variance/standard deviation of the elements can be computed with
mean(), var(), and sd(), all of which have also the optional argumentna.rm:

mean(x)

[1] 2.5

var(y)

[1] NA

var(y, na.rm = T)

[1] 1.666667

Finally, we often want to compute the sum or the product of all the elements of the
vector. Here the functions sum() and prod() are useful:

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 18

sum(x)

[1] 10

prod(y, na.rm = T)

[1] 24

2.2 Lists

In contrast to atomic vectors, lists can contain objects of different types. We create lists
via the function list():

l_1 <- list(
"a",
c(1,2,3),
FALSE

)
typeof(l_1)

[1] "list"

l_1

[[1]]
[1] "a"

[[2]]
[1] 1 2 3

[[3]]
[1] FALSE

Lists can become very complex. The function str() (short for “structure”) helps us to
get a quick overview over a list and its elements:

str(l_1)

List of 3
$: chr "a"
$: num [1:3] 1 2 3
$: logi FALSE

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 19

We can name the elements of lists:11

l_2 <- list(
"first_element" = "a",
"second_element" = c(1,2,3),
"third_element" = FALSE

)

We can retrieve the names of all elements of the list with names():

names(l_2)

[1] "first_element" "second_element" "third_element"

There are two very important differences in the handling of vectors and lists:

1. Vectorization does not work for lists
2. Indexing works differently

The first issue can be illustrated easily:

vec_expl <- c(1,2,3)
list_expl <- list(1,2,3)
sqrt(vec_expl)

[1] 1.000000 1.414214 1.732051

But:

sqrt(list_expl)

Error in sqrt(list_expl): non-numeric argument to mathematical function

The second issue is due to the more complex structure of lists. For vectors we extracted
single elements via [. For lists, there is a difference between [and [[. The former
always returns a list:

l_1[2]

[[1]]
[1] 1 2 3

The second then returns a vector and is more similar to the behavior of [in the context
of atomic vectors:

11We can actually also do this with vectors, but it is more common in the context of lists.

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

Tutorial: Vectors 20

l_1[[2]]

[1] 1 2 3

To extract an element of this vector we can chain the brackets:

l_1[[2]][3]

[1] 3

We can also extract elements by their name:

l_2[[1]]

[1] "a"

l_2[["first_element"]]

[1] "a"

Lists are fundamental to many more complex structures that we will encounter later.
They are more flexible than atomic vectors, but this flexibility also makes them more
difficult to use and less efficient for tasks where this flexibility is not needed. As a rule
of thumb, whenever you can represent something as an atomic vector, you should do so.
You should always have a good reason for using lists!

Data Science Using R - Spring Semester 2024

https://euf-datascience-spring24.netlify.app/

	Overview
	Vectors
	Atomic vectors
	Lists

