Estimating average height of EUF students - a
MCS

Solution to the exercise

2024-06-15

library(tibble)
library(ggplot2)

Task:

Suppose you are interested in the average height of the students at the European
University Flensburg and you are wondering what a good sample size would be.
Suppose further that the data set DataScienceExercises: :EUFstudents contains
the result of a census of EUF students. Study the process of sampling by carrying
an MCS in which you draw random samples of size 10 and 50 from this population.
To do this, conduct an MCS with 1000 repetitions and check what difference it
makes to increase the sample size.

First, make sure you understand which steps are necessary to solve this task. Here, you need
to:

1. Read in and understand the data set DataScienceExercises: :EUFstudents

2. Draw a random sample from this data set and compute the average height of students
in this sample

3. Design a MCS in which this draw is executed 1000 times for two different sample sizes

4. Analyze the results by studying the mean and variance of the estimates.

Once you have set up such a plan you can proceed step-by-step.

1 Read in and understand the data set

It is always a good idea to have a shortcut to your data:



student_data <- DataScienceExercises: :EUFstudents
Then, inspect the data:

head(student_data)

# A tibble: 6 x 2
Gender Height
<chr> <dbl>
female 159.
female 161.
female 173.
female 163.
female 164.
female 174.
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We see that there are two columns. For the purpose of this task, only the column Height is
relevant.

2 Draw and analyze a random sample from this data set

To draw a random sample of size 10, we can use the function sample() as follows:

sample(x = student_datal[["Height"]], size = 10)

[1] 175.4042 161.9121 151.9890 149.6424 168.1513 160.9433 157.9966 163.7599
[9] 182.6694 164.6025

Note that sample() takes as input an atomic vector. Thus, you need to extract the column
Height as a vector from the underlying data set before drawing the sample!

But since we are interested in the average height of the students (our population parameter of
interest), we need to compute this parameter also for our sample:

mean(sample(x = student_datal[["Height"]], size = 10))

[1] 166.6349

We now need to embed this process into a MCS!



3 Design a MCS

Although we need to run our MCS for 1000 times, it is a good idea to first design it using fewer
iteration. In any case, we should follow the standard procedure of developing an MCS.

First, create an output container with as many NAs as we will have repetitions. Note that since
we collect two kinds of results - one for sample size 10, one for sample size 50 - we need two
containers:

n_repetitions <- 5 # Start with 5 iterations
output_container_n10 <- rep(NA, n_repetitions)
output_container_nb0 <- rep(NA, n_repetitions)
output_container_nl0

[1] NA NA NA NA NA

Second, think about the looping sequence. In our case, we want to repeat the MCS for
n_repetitions times, so the looping sequence becomes:

for (i in seq_len(n_repetitions))

Third, add the action body. Here we use the code to draw a sample from above and just
integrate it into the loop:

for (i in seq_len(n_repetitions)){
output_container_nl10[i] <- mean(sample(
x = student_data[["Height"]], size = 10))

output_container_nb50[i] <- mean(sample(
x = student_datal[["Height"]], size = 50))
}

Finally, to make our results fully reproducible despite involving random processes, we use the
function set.seed().

In all, this leads to the following code:
n_repetitions <- 5 # Start with 5 iterations
output_container_n10 <- rep(NA, n_repetitions)

output_container_nb0 <- rep(NA, n_repetitions)

set.seed(123)



for (i in seq_len(n_repetitions)){
output_container_nl10[i] <- mean(sample(
x = student_datal[["Height"]], size = 10))

output_container_nb50[i] <- mean(sample(
x = student_datal[["Height"]], size = 50))
}

We can test this by running the code and inspect the output container:

output_container_nl0

[1] 166.1539 163.8509 167.5664 168.1203 167.5359

Okay, this makes sense. So now we can set n_repetitions to 1000 and run the MCS as
desired.

4. Analyze the results by studying the mean and variance of the estimates

To compare the results, we now look at the resulting sampling distributions. We can do
so visually, but for the task at hand, just computing the mean and standard deviation is
sufficient:

n_repetitions <- 1000
output_container_n10 <- rep(NA, n_repetitions)
output_container_nb0 <- rep(NA, n_repetitions)

set.seed(123)
for (i in seq_len(n_repetitions)){
output_container_nl10[i] <- mean(sample(
x = student_data[["Height"]], size = 10))

output_container_nb50[i] <- mean(sample(
x = student_datal[["Height"]], size = 50))

mean_10 <- mean(output_container_ni10)
mean_50 <- mean(output_container_n50)
sd_10 <- sd(output_container_n10)
sd_50 <- sd(output_container_n50)

tibble::tribble(



~ Sample size”, ~Mean, ~Variation,
#-—| == | -——-

10, mean_10, sd_10,

50, mean_50, sd_50

# A tibble: 2 x 3
“Sample size” Mean Variation

<dbl> <dbl> <dbl>
1 10 167. 2.77
50 167. 1.23

We see that the mean is very similar, meaning that on average both sample sizes are equivalent.
But we also see that the larger sample shows much less variation and the estimates from the
single samples are more concentrated around the true value. Thus, having larger samples
makes our estimations more precise!

4 Addendum: Visualizing the results

If you wanted to visualize the results, you could proceed as follows. First, because ggplot ()
requires tibbles as input, you first need to put your results into a tibble:

result_tibble <- tibble::tibble(
"sample_mean" = c(output_container_nl0, output_container_n50),
"sample_size" = c(rep(10, length(output_container_ni0)),
rep(50, length(output_container_nb50)))
)
head(result_tibble)

# A tibble: 6 x 2
sample_mean sample_size

<dbl> <dbl>
1 166. 10
2 164. 10
3 168. 10
4 168. 10
5 168. 10
6 169. 10



sampling plot <- ggplot(data = result_tibble, aes(x=sample_mean)) +
geom_histogram(alpha=0.5, color="#00395B", fill="#00395B", binwidth = 0.5) +
scale_y_continuous(expand = expansion(add = c(0, 10))) +
facet_wrap(~sample_size, nrow = 2) +

labs(
x = "Sample means",
y = "Count",

title = "The sampling distributions") +
theme_linedraw()
sampling_plot

The sampling distributions
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Here, the similar mean but very different variance become apparent!
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