Exercises for Recap Session 1

Possible solutions

2024-04-18

Exercise 1: Basic object types |

1. Create a vector containing the numbers 2, 5, 2.4 and 11.
exl vec <- c(2, 5, 2.4, 11)
2. Replace the second element with 5.9.
exl_vec[2] <- 5.9
exl_vec
[1] 2.0 5.9 2.4 11.0

3. Add the elements 3 and 1 to the beginning, and the elements "8.0" and "9.2" to the
end of the vector.

va_1l <- c(3, 1)

va_2 <- c("8.0", "9.2")

exl_vec_extended <- c(va_1, exl_vec, va_2)
exl_vec_extended

[1] Il3ll ||1ll I|2l| "5.9" ll2.4|| llll" ||8.0H II9.2"

4. Create a vector with the numbers from -8 to 9 (step size: 0.5)

exl_vec_4 <- seq(-8, 9, by = 0.5)
exl_vec_4

(1] -8.0 -7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.
[(16] -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6
[31] 7.0 7.5 8.0 8.5 9.0

5. Compute the square root of each element of the first vector using vectorisation.

sqrt(exl_vec_4)

Warning in sqrt(exl_vec_4): NaNs produced

[1] NaN NaN NaN NaN NaN NaN NaN
[8] NaN NaN NaN NaN NaN NaN NaN
[15] NaN NaN 0.0000000 0.7071068 1.0000000 1.2247449 1.4142136

[22] 1.5811388 1.7320508 1.8708287 2.0000000 2.1213203 2.2360680 2.3452079
[29] 2.4494897 2.5495098 2.6457513 2.7386128 2.8284271 2.9154759 3.0000000

6. Create a character vector containing then strings "Number_1" to "Number_5". Use suit-
able helper functions to create this vector quickly.

ex1_char_vec <- pasteO("Number_", seq(l, 5))
exl _char_vec

[1] "Number_1" "Number_ 2" "Number_3" "Number_4" "Number_ 5"

Exercise 2: Basic object types Il
Consider the following vector:

ex 2 vec <- c(1.9, "2", FALSE)

1. What is the type of this vector? Why?

typeof (ex_2_vec)

[1] "character"

Atomic vectors only contain objects of the same type, and there is a hierarchy. Elements that
themselves are of a type lower in the hierarchy are coerced to the same type as the object
highest in the hierarchy. The hierarchy is as as follows:

character
double
integer
logical

Ll O

Therefore, the type of ex_2_vec is character. The underlying reason is that you can, for
instance, always transform a double value into a character but not vice versa.

2. What happens if you coerce this vector into type integer? Why?

as.integer(ex_2_vec)

Warning: NAs introduced by coercion
[1] 1 2 NA

Because integer is lower in the hierarchy than character, the transformation is not straight-
forward. By coincidence, the first two elements can actually be coerced into integers (albeit
maybe not with the expected result), but there is no way you can transform the logical value
FALSE into an integer, which is why a missing value is produced.

3. What does sum(is.na(x)) tell you about a vector x? What is happening here?
x <- c(1,2,3,NA,NA,8)

First, is.na(x) creates a vector with logical values indicating whether a value of the original
vector is missing (i.e. NA):

is.na(x)

[1] FALSE FALSE FALSE TRUE TRUE FALSE

Then, sum() computes the sum over this vecor of boolean values:

sum(is.na(x))

(11 2

Here, TRUE counts as one and FALSE as zero, so sum() gives the number of cases in which
is.na(x) has evaluated to TRUE:

4. Is it a good idea to use as.integer() on double characters to round them to the next
integer? Why (not)? What other ways are there to do the rounding?

No, because as.integer () is not acutally rounding numbers (as, for example, as.integer(2.1)
would make you think), but only removing the decimal part of the number:

as.integer(2.9) # you might expect 2...

(1] 2

Better use round():

round(2.9)

(1] 3

Exercise 3: Define a function

Create functions that take a vector as input and returns:

1. The last value.

get_last_val <- function(x){
last_val <- x[length(x)]
return(last_val)

}

2. Every element except the last value and any missing values.

get_beginning <- function(x){
beginning <- x[-length(x)] # Removes last value
na_positions <- which(is.na(beginning)) # Get positions of NA values
beginning nonas <- beginning[-na_positions] # Removes these values
return(beginning_nonas)

3. Only even numbers.

Hint: Use the operation x %% y to get the remainder from diving x by y, the so
called ‘modulo y’. For even numbers, the modulo 2 is zero.

get_even <- function(x){
modulo_2s <- x%%2 # Module 2 is zero for even numbers only
even_nbs <- x[modulo_2s==0] # Keep only those for which modulo 2 is zero
na_positions <- which(is.na(even_nbs)) # Get positions of NA values

even_nbs_nonas <- even_nbs[-na_positions] # Removes these values
return(even_nbs_nonas)

}
Apply your function to the following example vector:

ex 3 vec <- c(1, -8, 99, 3, NA, 4, -0.5, 50)

get_last_val(ex_3_vec)

[1] 50
get_beginning(ex_3_vec)

[1] 1.0 -8.0 99.0 3.0 4.0 -0.5

get_even(ex_3_vec)

[1] -8 4 50

Exercise 4: Lists

1. Create a list that contains three elements called 'a', 'b' and 'c'. The first element
should correspond to a double vector with the elements 1.5, -2.9 and 99. The second
element should correspond to a character vector with the elments 'Hello', '3', and
'"EUF'. The third element should contain three times the entry FALSE.

ex_ 4 list <- list(

'a' = ¢(1.5, -2.9, 99),

'b' = c('Hello', "'3'", 'EUF'),
rep(FALSE, 3)

ICI

2. Transform this list into a data.frame and a tibble. Then apply str() to get informa-
tion about the respective structure. How do the results differ?

ex_4_df <- as.data.frame(ex_4_list)
ex 4 tb <- tibble::as tibble(ex_4 list)
str(ex_4_list)

List of 3
$ a: num [1:3] 1.5 -2.9 99
$ b: chr [1:3] "Hello" "'3'" "EUF"
$ c: logi [1:3] FALSE FALSE FALSE

str(ex_4_df)

'data.frame': 3 obs. of 3 variables:
$ a: num 1.5 -2.9 99

$ b: Chr llHelloll ni 3 mrn |IEUFII

$ c: logi FALSE FALSE FALSE

str(ex_4_tb)

tibble [3 x 3] (S3: tbl_df/tbl/data.frame)
$ a: num [1:3] 1.5 -2.9 99

$ b: chr [1:3] "Hello" "'3'" "EUF"

$ c: logi [1:3] FALSE FALSE FALSE

str() only differs with regard to the first line describing the type.

Exercise 5: Data frames and the study semester distribution at EUF

The package DataScienceExercises contains a data set called EUFstudentsemesters, which
contains information about the distribution of study semesters of enrolled students at the EUF
in 2021. You can shortcut the data set as follows:

euf_semesters <- DataScienceExercises::EUFstudentsemesters

1. What happens if you extract the column with study semesters as a vector and transform
it into a double?

unique (euf_semesters[["Semester"]])

[1] II6II ||4ll II2II II8I| "9 or higherll
[6] l|7ll ||5ll ||3ll ||1||

semesters <- as.double(euf_semesters[["Semester"]])

Warning: NAs introduced by coercion
unique (semesters)

(1] 6 4 2 8NA 7 5 3 1

We see that the previous entry "9 or higher" has been transformed into NA.

2. What is the average study semester of those students being in their 8th or earlier

semester?

mean(semesters, na.rm = TRUE)

[1] 4.177026

3. How many students are in their 9th or higher study semester?

sum(euf_semesters$Semester=="9 or higher")

[1] 469

4. What does typeof (euf_semesters) return and why?

typeof (euf _semesters)

[1] "list"

It returns 1ist, because while euf _semesters is a tibble, typeof () always gives the under-
lying basic object type. For tibbles, this is 1ist.

	Exercise 1: Basic object types I
	Exercise 2: Basic object types II
	Exercise 3: Define a function
	Exercise 4: Lists
	Exercise 5: Data frames and the study semester distribution at EUF

