
Prof. Dr. Claudius Gräbner-Radkowitsch
Europa-University Flensburg, Department of Pluralist Economics
www.claudius-graebner.com | @ClaudiusGraebner | claudius@claudius-graebner.com

Importing data
Applied Data Science using R

http://www.claudius-graebner.com
https://twitter.com/ClaudiusGrabner
mailto:claudius@claudius-graebner.com

Claudius Gräbner-Radkowitsch

I. Learn how to handle raw and tidy data in R

II. Learn how to import data into R using data.table::fread()

III. Learn how to save data

Goals for today

2

Claudius Gräbner-Radkowitsch

• Importing and preparing is the most fundamental task in data science
• It is also largely under-appreciated 🙄

The role of data preparation

3

Data preparation
and processing

Visualisation

Presentation of the insights: an overall story

Data analysis and
modelling

Claudius Gräbner-Radkowitsch

• Use directory structure introduced in session on project management

• Learn how to import data using the most widely used file formats, esp. csv

• Goal: all results must be reproducible from the raw data at any time

• This implies that you must not manipulate your raw data at any cost

• Raw data = what you download from the internet, gather through an
experiment, or code yourself

• This session: how to get the raw data “into R” and “out into the file system”

Focus of this session

4

Builds on session on project
management

Predates session on data
preparation

Claudius Gräbner-Radkowitsch

• Raw data must not be changed, but is usually not in a state we can work
with 🤨

Recap: how to keep your work transparent

5

1. Gather data, save
it on you PC

• Saving the scripts in steps 2 & 3 makes your work fully reproducible

• By looking into the script you will always know what you did to your raw
data → you can also heal basically every mistake you made, not harm done!

2. Import this data
into R

4. Use the tidy data for further
analysis: visualisation, modelling, etc.

3. Write a script that transforms raw
data into tidy data

Claudius Gräbner-Radkowitsch

Outlook

6

Set up you project environment

Import data

Transform raw data into tidy data

Save data

This is done only
once per project}

This might be done
several times}

Claudius Gräbner-Radkowitsch

Outlook

7

Set up you project environment

Import data

Transform raw data into tidy data

Save data

This is done only
once per project}

This might be done
several times}

Claudius Gräbner-Radkowitsch

Importing data

8

Claudius Gräbner-Radkowitsch

• Raw data should be saved in data/raw

• If you have very few data sets, you might also
use only data

• Tidied up data should be saved in data/tidy
→ keep it separate

Preparation: set up your working environment

9

See separate session on data
preparation

See separate session on project
management

Claudius Gräbner-Radkowitsch

• Now that we have set up the project environment we can import data

• In the following we will assume that you raw data is stored in the folder
data/raw

• The function we use to import a data set depends on the file type:

Import functions

10

csv/tsv files .Rds/RData files Specific formats

data.table::fread() readRDS()
load()

haven::read_dta()
haven::read_sas()
haven::read_spss()

• Basic procedure the same in all cases → focus on reading csv files here

Claudius Gräbner-Radkowitsch

• Good practice: save path to file in a vector:
data_path <- here("data/raw/wb_data.csv")

• Since its a csv file we use data.table::fread():

data.table::fread(file = data_path)

• In general, I recommend using data.table::fread()

• But: alternatives available, including from tidyverse

• This uses default options to import the file

• Works often for clean data files

• But for the sake of transparency and since data files are often not clean, we
should specify several optional arguments

How to import data

11

Claudius Gräbner-Radkowitsch

• Download the zip file fread_expls.zip
from the course homepage

• Extract the zip file within the folder data/
raw/ in your R project

• Write a script that imports the data set
saved in the file fread_expls-1.csv into
your session

Exercise 1

12

DataProject

DataProject.Rproj

data

raw

fread expls-1.csv

fread expls-2.csv

fread expls-3.csv
R

import data 1.R

Claudius Gräbner-Radkowitsch

• See also the tutorial on data import

• In the following we will learn when and how to use the following arguments
of data.table::fread():

• file: the relative path to the csv file you want to read → use here::here()

• sep: symbol that separates columns

• dec: symbol used as decimal sign

• colClasses: what object type should be used for the columns?

• For other widely used commands check the tutorial and do the exercises

• But note that there are even more specification options → help(fread)

How to use data.table::fread()

13

Claudius Gräbner-Radkowitsch

• See also the tutorial on data import

• In the following we will learn when and how to use the following arguments
of data.table::fread():

• file: the relative path to the csv file you want to read → use here::here()

• sep: symbol that separates columns

• dec: symbol used as decimal sign

• colClasses: what object type should be used for the columns?

• For other widely used commands check the tutorial and do the exercises

• But note that there are even more specification options → help(fread)

How to use data.table::fread()
Specify column separator

14

Claudius Gräbner-Radkowitsch

• Especially in Germany, columns are often separated via ; instead of ,

• We can pass a string to sep indicating how the columns are separated

• In the above case: sep = ";"

How to use data.table::fread()
Specify column separator

15

c_code; year; exports; unemployment

AT; 2013; 53.44; 5.34

AT; 2014; 53.39; 5.62

DE; 2013; 45.4; 5.23

DE; 2014; 45.64; 4.98

Claudius Gräbner-Radkowitsch

• See also the tutorial on data import

• In the following we will learn when and how to use the following arguments
of data.table::fread():

• file: the relative path to the csv file you want to read → use here::here()

• sep: symbol that separates columns

• dec: symbol used as decimal sign

• colClasses: what object type should be used for the columns?

• For other widely used commands check the tutorial and do the exercises

• But note that there are even more specification options → help(fread)

How to use data.table::fread()
Specify column separator

16

Claudius Gräbner-Radkowitsch

How to use data.table::fread()
Specify decimal separator

17

c_code; year; exports; unemployment

AT; 2013; 53,44; 5,34

AT; 2014; 53,39; 5,62

DE; 2013; 45,4; 5,23

DE; 2014; 45,64; 4,98

• Again in Germany, decimal places are often separated via , instead of .

• We can pass a string to dec indicating how the columns are separated

• In the above case: dec = ","

Claudius Gräbner-Radkowitsch

• Write a script that imports the data set fread_expls-2.csv into your
session such that the following tibble results:

Exercise 2

18

Claudius Gräbner-Radkowitsch

• See also the tutorial on data import

• In the following we will learn when and how to use the following arguments
of data.table::fread():

• file: the relative path to the csv file you want to read → use here::here()

• sep: symbol that separates columns

• dec: symbol used as decimal sign

• colClasses: what object type should be used for the columns?

• For other widely used commands check the tutorial and do the exercises

• But note that there are even more specification options → help(fread)

How to use data.table::fread()
Specifying column types using colClasses

19

Claudius Gräbner-Radkowitsch

• Whenever numbers should be saved as character, the guessing algorithm of
data.table::fread() often fails:

How to use data.table::fread()
Specifying column types using colClasses

20

c_code,year,exports, PROD_CODE

AT, 2013, 53.44, 0011

AT, 2014, 53.39, 0011

DE, 2013, 45.4, 0011

DE, 2014, 45.64, 0011

• We can specify the column types explicitly by passing a vector to
colClasses:
• colClasses = c("character", rep("double", 2), "character")

• Usually, this is often a good idea to make your code more transparent
• You can also combine it with select and only read selected columns (see

tutorial)

Claudius Gräbner-Radkowitsch

• Now read in the file fread_expls-3.csv and use all the arguments you
consider to be necessary

• Make sure that the column cgroup is stored as a factor

Exercise 3

21

• Hint:

• To get an idea about the raw data, click on the file
and select “View File” to see it in its raw form → helps
you to choose the right arguments:

• Infeasible for very large files → use nrows and
select to read a representative subset (see tutorial)

Claudius Gräbner-Radkowitsch

• Saving data is much easier than reading data

• The only relevant question is about the format

• If there are no good arguments for using a different format, go for csv

• This can be achieved by data.table::fwrite()with the main arguments:

• x: the name of the object to be saved

• file: the file name under which the object should be saved

• Example: save object exp_tab to file data/exp_tab.csv:

data.table::fwrite(
 x = exp_tab,
 file = here::here("data/exp_tab.csv")
)

And what about saving data?

22

Claudius Gräbner-Radkowitsch

• General idea: you import the data and bind it to an R object - usually a
data.frame or whatever aligns with your preferred dialect

• Then you proceed with transforming this data.frame until it satisfies the
demands for tidy data

Data import - the general idea

23

Make yourself comfortable before reading in data -
expect frustration!

• Then you save the data under a
new name, save the script, and
celebrate yourself 🎉🍾🥂

• We will cover the transformation
steps in the next session

Claudius Gräbner-Radkowitsch

• You learned how to import data into R

• Main focus: importing csv data files using data.table::fread()

• Other functions for csv provided, e.g., via the tidyverse packages

• Other formats: specialised functions available, esp. in the haven package

• Importing standard data often works well with default options

• In other cases, optional arguments must be used → check function
documentation

• If speed or memory restrictions are an issue, comparing import functions
is advisable

Summary and conclusion

24

