Data preparation

Applied Data Science using R

Prof. Dr. Claudius Gräbner-Radkowitsch
Europa-University Flensburg, Department of Pluralist Economics

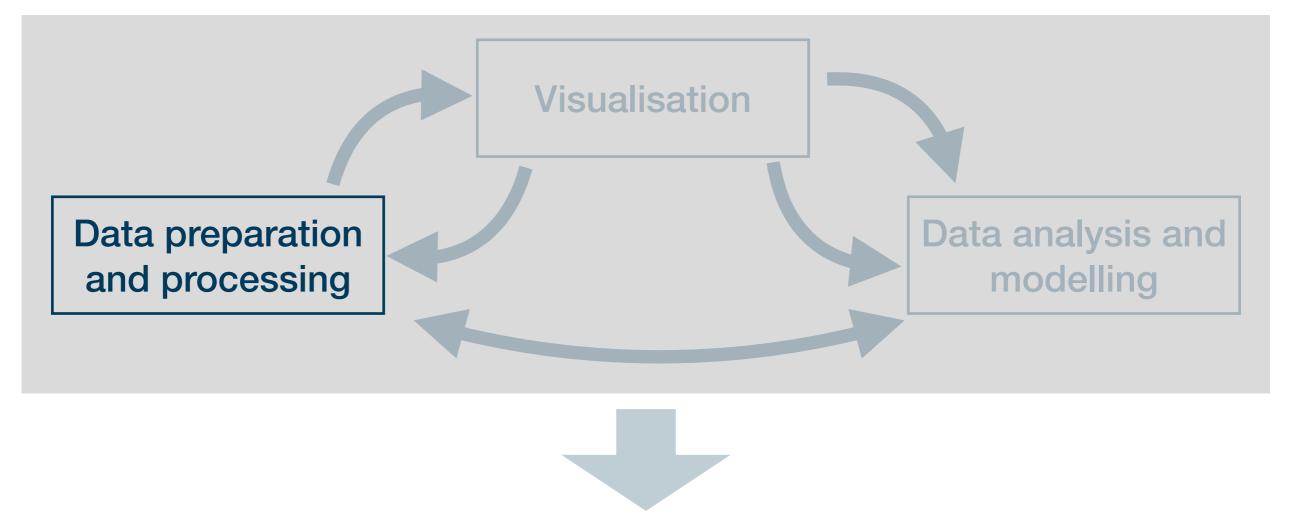
www.claudius-graebner.com | @ClaudiusGraebner | claudius@claudius-graebner.com

Goals for today

- I. Understand the concept of tidy data
- II. Get an overview over the most common transformation routines
- III. Master a number of functions from the tidyr and dplyr packages to address some of these challenges

The role of data preparation

- Importing and preparing is the most fundamental task in data science
 - It is also largely under-appreciated



Presentation of the insights: an overall story

What is tidy data?

The goal: tidy data

Tidy datasets are all alike, but every messy dataset is messy in its own way.

Hadley Wickham

- Translation into plain English:
 - We find data sets in all kind of ***-up forms in the world
 - We must turn them into a form that's a good starting point for any further tasks
- Good thing: this form is unique and its called tidy

The goal: tidy data

Every column corresponds to one and only one variable

Every row corresponds to one and only one observation

# A tibbl	.e: 4 >	< 4	
c_code	year	exports	unemployment
<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>
1 AT	2013	53.4	5.34
2 AT	2014	53.4	5.62
3 DE	<u>2</u> 013	45.4	5.23
4 DE	2014	45.6	4.98

Every **cell** corresponds to one and only one **value**

- Every data set that satisfies these three demands is called tidy
- Excellent start for basically every further task but maybe not the best way to represent data to humans

The goal: tidy data

Every row corresponds to one and only one observation

Every column corresponds to one and only one variable

Every **cell** corresponds to one and only one **value**

4

4

The goal of data wrangling is to turn such untidy data into tidy data

Recap questions

- What are the three demands a data set needs to fulfil to count as 'tidy'?
- Why do we care about tidy data at all?
- Are there plausible reasons for transforming a tidy data set into a non-tidy data set?
- Consider the following data sets. Are they tidy? If not, what would you need to change to make them tidy?

#	A tibble: 6×3		
	${\tt beer_consumption}$	liquor_price	water_price
	<dbl></dbl>	<dbl></dbl>	<db1></db1>
1	81.7	6.95	1.11
2	56.9	7.32	0.67
3	64.1	6.96	0.83
4	65.4	7.18	0.75
5	64.1	7.46	1.06
6	58.1	7.47	1.1

The way to tidy data

Tidy datasets are all alike, but every messy dataset is messy in its own way.

Hadley Wickham

- The starting point to tidy data is always different
- The goal is always the same → so are the steps: six main routines
- Two main packages are relevant:
 - tidyr provides functions for reshaping data into tidy format ('wrangling')
 - dplyr provides functions for manipulating data to extract desired information

Reshaping data from long to wide format (and vice versa)

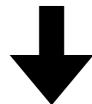
```
# A tibble: 4 \times 4
  c_code year exports unemployment
  <chr> <int>
                  <db1>
                               <db1>
1 AT
          2013
                  53.4
                                5.34
         <u>2</u>014 53.4
2 AT
                                5.62
                                5.23
         <u>2</u>013 45.4
3 DE
                45.6
                                4.98
4 DE
          2014
```


#	A TLDDI	.e. o >	< 4	
	c_code	year	variable	value
	<chr></chr>	<int></int>	<chr></chr>	<db1></db1>
1	AT	<u>2</u> 013	exports	53.4
2	AT	<u>2</u> 013	unemployment	5.34
3	AT	<u>2</u> 014	exports	53.4
4	AT	<u>2</u> 014	unemployment	5.62
5	DE	<u>2</u> 013	exports	45.4
6	DE	<u>2</u> 013	unemployment	5.23
7	DE	<u>2</u> 014	exports	45.6
8	DE	<u>2</u> 014	unemployment	4.98

Λ +ibblo 2×1

Filter rows according to conditions

Select columns/variables



```
# A tibble: 4 \times 3
  c_code year exports
  <chr> <int>
                 <db1>
1 AT
                  53.4
          2013
2 AT
                  53.4
          2014
3 DE
          2013
                  45.4
                  45.6
4 DE
          2014
```


Mutate or create variables

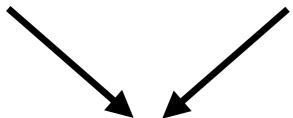
```
# A tibble: 4 \times 4
  c_code year exports unemployment
  <chr> <int> <dbl>
                                <db1>
                   53.4
1 AT
          2013
                                 5.34
                 53.4
                                 5.62
2 AT
          <u>2</u>014
                 45.4
                                 5.23
3 DE
          <u>2</u>013
                   45.6
                                 4.98
4 DE
          2014
```

Group and **summarise** data

#	Α	tibbl	Le:	2	\times	3			
	C_	_code	exp	or	ts	s_avg	unemplo	yment_a	avg

<chr></chr>	<db1></db1>	<db1></db1>
1 AT	53.4	5.48
2 DE	45.5	5.11


```
# A tibble: 4 \times 3
                                   # A tibble: 4 \times 3
                                    c_code year unemployment
  c_code year exports
                                                             <db1>
  <chr> <int>
                <db1>
                                      <chr> <int>
1 AT
                    53.4
                                    1 AT
                                               <u>2</u>013
                                                              5.34
           2013
                                    2 AT
                                               <u>2</u>014
                                                              5.62
                    53.4
2 AT
           <u>2</u>014
                                                              5.23
                    45.4
                                    3 DE
                                               2013
3 DE
           2013
                    45.6
                                    4 DE
                                               2014
                                                              4.98
4 DE
           2014
```



Merge several data sets

A tibble: 4×4

	c_code	year	exports	unemployment
	<chr></chr>	<int></int>	<db1></db1>	<db1></db1>
1	AT	<u>2</u> 013	53.4	5.34
2	AT	<u>2</u> 014	53.4	5.62
3	DE	<u>2</u> 013	45.4	5.23
4	DE	<u>2</u> 014	45.6	4.98

 After having imported your data into R, you can usually make it tidy using a sequential combination of the following routines:

Reshaping data from long to wide format (and vice versa)

Filter rows according to conditions

Select columns/variables

Mutate or create variables

Group and **summarise** data

Merge several data sets

- With these six routines, you can prepare almost any messy data set
- This way you produce the inputs we used for visualisation...
 - ...and the inputs we will use for modelling

Recap questions

- What is the relation between long and wide data sets?
- Name the six main routines of data preparation and explain what they are used for.
- What does 'data wrangling' mean?
- Which two packages are used most frequently in the context of data preparation? What are their respective areas of application?

Six main routines for data preparation

Session content

We will go through the following challenges via direct demonstration:

Filter rows according to conditions

Reshaping data from long to wide format (and vice versa)

Select columns/variables

Mutate or create variables

Group and **summarise** data

Merge several data sets

- For documentation purposes check out the lecture notes and the readings
 - The data sets used for the following exercises are all contained in wrangling_exercises_data.zip, which is available on the course homepage

Short recap on reshaping

Take the data set data_raw_long and transform it as follows:

```
> data_raw_long
   country year variable
                             value
                                                         # A tibble: 4 \times 4
1: Germany 2017
                              3.75
                    unemp
                                                             year variable Germany Greece
2: Germany 2017
                      qdp 53071.46
                                                            <int> <chr>
                                                                                 <db1>
                                                                                          <db1>
3: Germany 2018
                               3.38
                    unemp
                                                             2017 unemp
                                                                                           21.5
                                                                                  3.75
4: Germany 2018
                      qdp 53431.39
                                                             <u>2</u>017 gdp
                                                                             53071.
                                                                                       28605.
                             21.49
5: Greece 2017
                    unemp
                                                             <u>2</u>018 unemp
                                                                                  3.38
                                                                                           19.3
6: Greece 2017
                      gdp 28604.86
                                                             <u>2</u>018 gdp
                                                                             <u>53</u>431.
                                                                                       <u>29</u>141.
                             19.29
7: Greece 2018
                    unemp
8: Greece 2018
                      qdp 29141.17
```

Take the data set gini_join and transform it as follows:

```
> gini_join
                                           # A tibble: 2 \times 4
# A tibble: 2 \times 3
                                             country year Indicator Observation
  country year gini
                                                     <int> <chr>
                                                                             <db1>
  <chr>
          <int> <dbl>
                                           1 Greece
                                                     <u>2</u>015 gini
                                                                              33.1
1 Greece
           2015 33.1
                                           2 Greece
                                                      2017 aini
                                                                              32.2
2 Greece
           2017 32.2
```


Short recap on manipulation basics

 Consider the data set wine2dine from the package DataScienceExercises

- 1. Filter the data set such that it only contains white wines
- 2. Then remove the column 'kind'
- 3. Change the type of the column 'quality' into double
- 4. Divide the values in the columns 'alcohol' and 'residual sugar' by 100
- 5. Filter the data such that you only keep the wines with the highest quality score

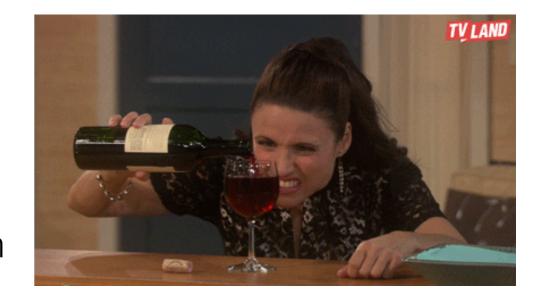
Short recap on summarising and grouping

What is the difference between

dplyr::mutate() and

dplyr::summarize()?

 Consider again the data set wine2dine from the package DataScienceExercises



- 1. Summarise the data by computing the mean alcohol, mean sugar, and mean quality of white and red wines
- 2. Compute a variable indicating how the quality of each wine deviates from the average quality of all wines.

Short recap on joining data sets

 Consider the data sets join_x.csv and join_y.csv and join them on the columns time and id using the functions left_join(), right_join(), and full_join()!

- Try for yourself what the function inner_join() does. How does it differ from left_join(), right_join(), and full_join()?
- Consider the data sets join_x.csv and join_y.csv and the function dplyr::full_join(). What is the difference of joining on columns time and id vs joining only on column id?

Helpful tools I: Pipes

Using pipes

- While not strictly necessary, you can improve the usability and readability of your code using so called pipes: %>%
- Pipes take the result from their left and 'throw' them on the right
 - The thrown result can be referred to via.
 - Usually they are used at the end of a line and 'throw' the result of one line into the next one

```
data_sub <- dplyr::select(
   .data = data_raw,
   country, year, unemp, gdp)

data_sub <- data_raw %>%
   dplyr::select(
    .data = .,
    country, year, unemp, gdp)
```

Using pipes

- While not strictly necessary, you can improve the usability and readability of your code using so called pipes: %>%
- Pipes take the result of one line and 'throw' them into the next line
 - The thrown result can be referred to via.
 - By default, the thrown result is used as the first argument of the function in the next line

```
data_sub <- dplyr::select(
   .data = data_raw,
   country, year, unemp, gdp)</pre>
```



```
data_sub <- data_raw %>%
  dplyr::select(
    .data = .,
    country, year, unemp, gdp)
```

```
data_sub <- data_raw %>%
  dplyr::select(
    country, year, unemp, gdp)
```

Using pipes

A more practical example:

```
chain_1 <- tidyr::pivot_longer(
  data = data_raw_wide,
  cols = c("gdp", "gini","unemp"),
  names_to = "indicator",
  values_to = "val")</pre>
```

```
chain_2 <- tidyr::pivot_wider(
  data = chain_1,
  names_from = "year",
  values_from = "val")</pre>
```

```
chain_complete <- pipe_data_raw %>%
  tidyr::pivot_longer(
    data = .,
    cols = c("gdp", "gini", "unemp"),
    names_to = "indicator",
    values_to = "val") %>%
  tidyr::pivot_wider(
    data = .,
    names_from = "year",
    values_from = "val")
```

- Pipes make code almost always easier to read → desired stage at the end
- But is is usually easier make intermediate steps explicit during code development

Short recap on piping

- Explain what the pipe %>% does.
- When can the pipe be useful?

Rewrite the following code

 using pipes (data available via course page)

```
pipedata_v1 <- data.table::fread(here("data/recap2.csv"))
pipedata_v2 <- tidyr::pivot_longer(
   data = pipedata_v1,
   cols = c("lifeExp", "gdpPercap"),
   names_to = "Indicator",
   values_to = "Value")

pipedata_v3 <- tidyr::pivot_wider(
   data = pipedata_v2,
   names_from = "year",
   values_from = "Value")</pre>
```

 Look at the introduction to the R package magrittr, which defines even more pipes: https://magrittr.tidyverse.org/articles/magrittr.html

Helpful tools II: Selection helpers

Digression: tidy selection helpers

- It can become tedious to select many columns using explicit reference to their names
- The tidy selection helpers are a useful tool to select columns based on common criteria:

```
data_raw_wide %>%
    dplyr::select(gdp, gini)

data_raw_wide %>%
    dplyr::select(
    tidyr::starts_with("g"))

data_raw_wide %>%
    dplyr::select(c("country", "year")),
    tidyr::starts_with("g"))
```

• For a complete list of helpers see, e.g., the official reference

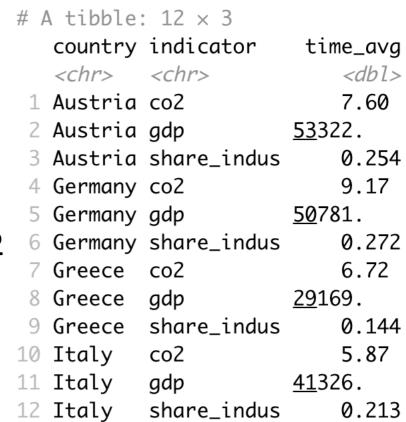
Exercise 1: filtering and reshaping

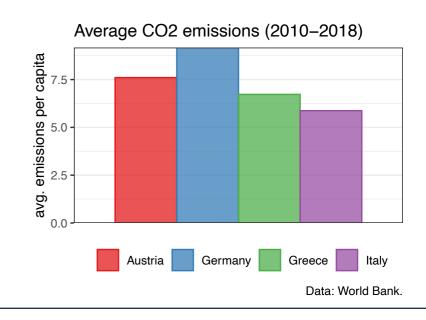
- Use the data set exercise_1.csv contained in wrangling_exercises_data.zip
- Import the data and ...
 - ...only consider data on Greece and Germany between 1995 and 2015
 - ...make it wider (and tidy)
 - ...save it in the subfolder data/ tidy/

```
# A tibble: 42 \times 4
    country year gdp
                                   co2
    <chr> <int> <dbl> <dbl>
 1 Germany <u>1</u>995 <u>39</u>366. 10.7
 2 Germany <u>1</u>996 <u>39</u>569. 11.0
 3 Germany <u>1</u>997 <u>40</u>219. 10.6
 4 Germany <u>1998</u> <u>41</u>023. 10.5
 5 Germany <u>1999 41770</u>. 10.2
 6 Germany <u>2</u>000 <u>42</u>928. 10.1
 7 Germany <u>2</u>001 <u>43</u>577. 10.3
 8 Germany <u>2</u>002 <u>43</u>417. 10.1
 9 Germany <u>2</u>003 <u>43</u>089. 10.1
10 Germany <u>2</u>004 <u>43</u>605. 9.95
# ... with 32 more rows
```

Exercise 2: mutating, selecting & summarising

- Use the data set exercise_2.csv contained in wrangling_exercises_data.zip
- Import the data
 - Only keep the variables gdp, share_indus, and co2
 - Divide the industry share in GDP with 100
 - Only keep data between 2010 and 2018
 - Compute the averages over time for all countries
- Bonus:
 - Visualise the resulting CO2 average via a bar plot





Summary & outlook

Summary

- After importing raw data you usually must prepare them → make tidy
- Tidy data is the input to any visualisation/modelling task and defined as data where:
 - Every column corresponds to one and only one variable
 - Every row corresponds to one and only one observation
 - Every cell corresponds to one and only one value
- It is usually a good idea to write a script that imports raw, and saves tidy data
- Such script usually makes use of functions from the following packages:
 - data.table, dplyr, tidyr, and here

Summary

- These packages provide functions that help you to address some wrangling challenges that regularly await you:
 - Reshaping data: tidyr::pivot_longer() and tidyr::pivot_wider()
 - Filtering rows: dplyr::filter()
 - Selecting columns: dplyr::select() and the select helpers
 - Mutating or creating variables: dplyr::mutate()
 - Grouping and summarising: dplyr::group_by() and dplyr::summarise()
 - Merging data sets: dplyr::*_join()
- In later sessions we will learn also about some convenience shortcuts

Outlook

- We now covered the basics in all fundamental data science activities
 - We can now turn to the 'funny' part: modelling and analysis
- But before we will learn how to write reports using Quarto / R Markdown
 - → Learn to communicate your R activities to others by combining them with text, and distributing them online

Tasks until next time:

- 1. Read the lecture notes posted on the course page and replicate them
- 2. Have a look at the mandatory readings (step the challenges we did not cover yet)
- Do the exercises provided on the course page and discuss problems and difficulties via the Moodle forum

General recap questions

- What are the three demands a data set needs to fulfil to count as 'tidy'?
- Why do we care about tidy data at all?
- What is the relation between long and wide data sets?
- What are the six main routines of data preparation? What are they used for?
- What does 'data wrangling' mean?
- Which two packages are used most frequently in the context of data preparation? What are their respective areas of application?
- Explain what the pipe %>% does. When can the pipe be useful?

Data preparation is mainly about practice, so the practical exercises are particularly recommended (A)

