
Prof. Dr. Claudius Gräbner-Radkowitsch
Europa-University Flensburg, Department of Pluralist Economics
www.claudius-graebner.com | @ClaudiusGraebner | claudius@claudius-graebner.com

Advanced object types
Applied Data Science using R, Session 4

http://www.claudius-graebner.com
https://twitter.com/ClaudiusGrabner
mailto:claudius@claudius-graebner.com

Claudius Gräbner-Radkowitsch

I. Learn about three advanced object types: factor, data.frame, and
tibble

II. Understand and their relation to the basic types discussed previously

Goals for today

2

Claudius Gräbner-Radkowitsch

Advanced object types
in R

3

Claudius Gräbner-Radkowitsch

Recap: objects in R

4

Vectors

Atomic vectors Lists (‘generic vectors’)

logical integer double character

NULL factor data.frame

Based on: Wickham (2019): Advanced R

Claudius Gräbner-Radkowitsch

• While there are many object types in R, understanding the basics is key

• These are by far the most common ones → main subject of previous session

• All other object types are somehow ‘built upon’ the basic types by adding attributes

• Among the special types, two/three stand out in their prevalence:

On the logic behind advanced object types

5

Categorical data: factor
- Can also take a pre-specified number of

values: levels
- Classical example: Male, Female,

Diverse
- Created using the function factor()

Data frames: data.frame & tibble
- A kind of ‘table’ in which different

variables are stored as vectors
- A table-like form of lists
- Tibbles as a new variant of data frames

that “do less and complain more”
- Created using data.frame() and

tibble::tibble()

• Others that we will not cover here are, e.g., matrices, durations, or dates

Claudius Gräbner-Radkowitsch

• To turn our basic object types into something more fancy we can give them
attributes, one of which is called class

• This changes their behaviour when functions are applied to them

• Technically, adding a class attribute changes the class but not the type:
ff <- factor(c("F", "M", "M"), levels = c("F", "M", "D"))

typeof(ff)

class(ff)

• The class factor is an integer with two attributes:

attributes(ff)

• Not too important for us right now, but good to keep in mind!

Digression: some remarks on attributes

6

Claudius Gräbner-Radkowitsch

Factors

7

Claudius Gräbner-Radkowitsch

• Factors are used to represent ordinal or categorial data

• Elements of factors can take one out of several pre-specified values: levels

• Factors are integers with the attributes levels and class

• We create factors using the function factor(), which takes a vector and
an optional argument levels:
f_1 <- factor(c(rep("F", 4), rep("D", 5), rep("M", 3)),
 levels = c("D", "F", "M"))

Factors

8

Your turn

• What happens if we do not specify levels explicitly?

• What happens if the vector contains elements not pre-specified as levels?

Claudius Gräbner-Radkowitsch

• Usually levels are not ordered, but for ordinal data you can use the
argument ordered:
f_2 <- factor(c("high", "high", "low"),
 levels = c("low", "mid", "high"),
 ordered=TRUE)

• There are some useful factor-specific functions such as table().

Factors

9

What does the function table() do?
Try it on the factors you defined so far!

How can you make sure the frequency of elements that do not show up in the vector is displayed
as zero?

General remark on using factors in practice
In my experience, its usually better to store categorial data as character, and only transform them

to factors if necessary

Claudius Gräbner-Radkowitsch

Data frames and tibbles

10

Claudius Gräbner-Radkowitsch

• To create a data frame from scratch use
data.frame():

df_1 <- data.frame(
 "gender" = c(rep("male", 3), rep("female", 2)),
 "height" = c(189, 175, 180, 166, 150)
)

• To create a data frame from a list use
as.data.frame()

• Data frames are special lists of vectors where the length of each vector is equal!

→ Most list operations also work for data.frames

• We usually represent data frames as tables:

Data frames

11

Names of the vectors

• If you read in data into R, it almost always starts off as a data.frame

• How to transform them is the main subject of the sessions on data wrangling

vector 1 &
vector 2

Claudius Gräbner-Radkowitsch

• A modern version of the data.frame is the tibble (from the package tibble)
• We will mostly use tibbles in this course, but make sure you familiarise yourself with the

differences to the data.frame, which continues to be widespread (see the tutorial reading)
df_1 <- data.frame(
 "gender" = c(rep("male", 3), rep("female", 2)),
 "height" = c(189, 175, 180, 166, 150)
)

• To transform a data.frame (or a list) into a tibble, use
tibble::as_tibble():

tb_1 <- tibble::as_tibble(df_1)

• To extract single columns use the [or [[operators

• What’s the difference between the two?

• How do you think you can test for the type of a column vector?

Data frames and tibbles

12

Claudius Gräbner-Radkowitsch

• To get a quick overview about the content, use dplyr::glimpse() or
head()

• A complete overview can be obtained via View()

• Data frames are among the most widely used data types

• There different approaches of how to handle and transform them, each
associated with an R dialect

• We mainly rely on the tidyverse dialect, which is the easiest to learn and
comprehend → built upon tibbles

• Alternatives are the base (classical) and data.table (fastest) dialect, which
mainly use data.frames and data.tables

• This is useful to keep in mind when searching help in the internet

Data frames and tibbles

13

Claudius Gräbner-Radkowitsch

Conclusion

14

Claudius Gräbner-Radkowitsch

• Create a factor with the levels "still",
"medium", "sparkling", and arbitrary
instances of the three levels

• Get the relative frequencies for "medium" of
this factor

Final exercises

15

• Create a data frame with two columns, one called "nb" containing the
numbers 1 to 5 as double, the other called "char" containing the numbers 6
to 10 as character

• Transform this data frame into a tibble!

• Extract the second column of this tibble such that you have a vector

Photo from Brett Jordan auf Unsplash.

https://unsplash.com/de/@brett_jordan?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash
https://unsplash.com/de/fotos/braunes-holzkreuz-auf-weisser-flache-Fp4ERdkR5jU?utm_content=creditCopyText&utm_medium=referral&utm_source=unsplash

Claudius Gräbner-Radkowitsch

• This was the last session on the fundamentals of R

• We learned about the most important object types in R and how basic
object types can be turned into advanced ones by adding attributes

• Functions do different things when applied to different objects →
understanding object types is absolutely fundamental

Summary

16

Vectors
Atomic vectors Lists (‘generic vectors’)

logical integer double character

NULL factor data.frame

Claudius Gräbner-Radkowitsch

• Next session will be dedicated to recap and practicing

• I will explain unclear concepts or answer open questions → use the Moodle
forum

• We will do some exercises together in class

Summary and outlook

17

Tasks until next time:
1. Fill in the quick feedback survey on Moodle
2. Read the tutorials posted on the course page
3. Do the exercises provided on the course page and discuss problems

and difficulties via the Moodle forum

