
Prof. Dr. Claudius Gräbner-Radkowitsch
Europa-University Flensburg, Department of Pluralist Economics
www.claudius-graebner.com | @ClaudiusGraebner | claudius@claudius-graebner.com

Object types
Applied Data Science using R, Session 3

http://www.claudius-graebner.com
https://twitter.com/ClaudiusGrabner
mailto:claudius@claudius-graebner.com

Claudius Gräbner-Radkowitsch

I. Learn about the use of R packages

II. Understand the main object types in R and their practical relevance

III. Learn how to transform object types into each other

IV. Hear about some useful helper functions and the concept of vectorisation

Goals for today

2

Claudius Gräbner-Radkowitsch

Packages

3

Claudius Gräbner-Radkowitsch

• One cool thing about R is that there is a great community of R users that
write objects and functions that perform useful purposes and makes them
available to all

• This process of ‘making available objects to others’ is done via the use of R
packages

• You can think of an R package as a collection of assignments and
documentations that people pass around

• If you install R, you can use all objects that…

• …you defined for yourself

• …are pre-defined in R

• If you want to use objects defined by someone else in her package you
need to install this package

R packages

4

Claudius Gräbner-Radkowitsch

• The official way to distribute packages is via CRAN, the The Comprehensive
R Archive Network

• To install a package that was deployed on CRAN you must execute the
following command:
install.packages("NAME OF PACKAGE")

• To install the package ineq, for instance, do:

install.packages("ineq")

• To install packages that were not yet released on CRAN, other functions are
available

• After having installed the ineq package, you can use all objects defined by
it

Installing packages

5

Claudius Gräbner-Radkowitsch

• One object defined in ineq is the function Gini()

• Simply calling Gini() does, however, not work

• You need to tell R that Gini() is defined by the package ineq

• To do use, use :::

ineq::Gini(c(1,2,3,4))

• You may think of :: as building a bridge between your R session and all objects
defined in a package

• A sometimes more convenient way is to use the function library() at the beginning
of your script:

library(ineq)

• This makes available all objects of ineq in your current R session

Calling objects defined in packages

6

Claudius Gräbner-Radkowitsch

• Packages are written by many different people

• It is not unlikely that two packages assign the same name to different
objects

• If you then attach both packages, the assignment of the earlier package will
be masked

• Try this by attaching the two packages dplyr and plm

• In these cases, you must use :: to access the masked object of the first
package

• As a general rule: always use :: whenever masking is a potential problem →
makes your code much easier to understand for you and others

• Use the function conflicts() to see all names for which conflicts exists

Packages and masking

7

Claudius Gräbner-Radkowitsch

• What is the main rationale for the use of R packages?

• What is an R package in the most basic sense?

• How can you install R packages from CRAN? Illustrate this using the
package “dplyr”

• How can you access objects from a package that you have installed
previously? What are the advantages and disadvantages of the different
ways you learned about?

• What does it mean to ‘attach a package’?

• What do we mean with ‘masking’ in the context of using R packages?

Recap questions

8

Claudius Gräbner-Radkowitsch

Basic object types in R

9

Claudius Gräbner-Radkowitsch

• We have learned quite a bit about functions, now we turn to objects

• We must distinguish different object types because functions operate
differently depending on the type of the object we are processing

• E.g.: ‘adding up’ numbers is different than ‘adding up’ words

• Fortunately, there are only a few basic types you must know about

• More complex types are natural modifications of these basic types

• The most general type of object in R is a vector

Object types in R

10

To understand computations in R, two slogans are helpful:
Everything that exists is an object.

Everything that happens is a function call.
John Chambers

“

Claudius Gräbner-Radkowitsch

• Among the more specific vector types, we will learn about factors and
data frames later

Basic object types in R

11

TRUE, FALSE 1,2,3,… 0.1, 1.0, 2.9,… “One”, “Hello”,…

Atomic vectors Lists (‘generic vectors’)

logical integer double character

Vectors

Objects

NULL

Claudius Gräbner-Radkowitsch

• Atomic vectors are composed only of objects of the same type

• We say that an atomic vector is of the same type as are its elements

• We can test for this type using the function typeof()

• There are four main types of atomic vector that are most important:

Atomic vectors

12

Logical values:
logical

- Only two* options: TRUE
or FALSE

- Often the result of
logical operations (e.g.
4>2)

Whole numbers:
integer

- A whole number,
followed by L:

- 1L, 2L, 100L, etc.
- Often the result of

counting

Decimal numbers:
double

- A number with the
decimal sign .

- 2.0, 0.8, -7.5, etc.
- The ‘standard’ number

you will use

Letters and words:
character

- Might contain all kinds
of tokens and start and
end with "

- "2", "Hello!",
“vec_1", etc.

*: We will see later that missing values are also considered logical in some instances, but this is basically irrelevant now.

Claudius Gräbner-Radkowitsch

• The easiest way to create atomic vectors is the function c() (‘concatenate’)

t_vec <- c(1, 2, 3)

• The number of elements that are part of a vector are its length:

• You can test for the length of a vector using length():

length(t_vec)

• c() can also be used to merge atomic vectors or arbitrary length:

t_vec_2 <- c(4, 5, 6)

t_vec_full <- c(t_vec, t_vec_2)

Creating atomic vectors

13

Claudius Gräbner-Radkowitsch

• Sometimes we might want to change the type of an atomic vector

• In this context, the functions as.*() and is.*() are useful

• Substitute the * for the type of vector, and you can test and transform them:

xx <- “2”

is.double(xx)

yy <- as.double(xx)

is.double(yy)

• But be beware of some counter-intuitive transformation behaviour:
• as.integer(22.9)

• as.logical(99)

Coercion

14

Claudius Gräbner-Radkowitsch

1. Create a vector containing the numbers 2, 5, 2.4 and 11.

2. What is the type of this vector?

3. Transform this vector into the type integer. What happens?

4. Do you think you can create a vector containing the following elements:
"2", "Hallo", 4.0, and TRUE? Why? Why not?

Intermediate exercises

15

Claudius Gräbner-Radkowitsch

Helper functions, indexing,
and vectorisation

16

Claudius Gräbner-Radkowitsch

• There are some types of atomic vectors that you create frequently

• Sequences of numbers, concatenated words, or repetitions

• For case 1 you may use the function seq() with the following arguments:

• from, to: starting and end values of the sequence

• by: increment steps of the sequences (must be numeric)

• length.out: desired length of final sequence

• along.with: creates sequence of same length as object

• Only one of the arguments (ii), (iii), and (iv) can be used, e.g.:
• seq(-5, 5, by=2.5) ; seq(1, 4, length.out=10)

Some useful helper functions

17

Claudius Gräbner-Radkowitsch

• For case 2 you may use the function paste() with the argument sep:

• sep: How should the input vectors be separated?

• This is useful, for instance, if you want to create file names:
paste("file_", seq(1,4), ".pdf", sep = "")

• Finally, if you want to repeat something, use rep():

rep("Cool!", 5)

Some useful helper functions

18

• There are some types of atomic vectors that you create frequently

• Sequences of numbers, concatenated words, or repetitions

Claudius Gräbner-Radkowitsch

• Indexing means referencing a particular position of a vector

• You do this by adding the position in square brackets to the end of the vector

• v_c[3], for instance, returns the third element of the vector v_c

• You can also use this logic to replace these elements:
v_c <- c("First", "Second", "Second", "Fourth")

v_c[3] <- "Third!"

• But you cannot use this to add new elements to a vector:
v_c[5] <- "Fifth…"

• Add a fifth element to the vector v_c!

Indexing

19

Claudius Gräbner-Radkowitsch

• One reason why atomic vectors are so popular is that they allow for very
fast computations

• For the computer it is much easier to work with sets of objects that all behave
the same

• Vectorisation means that an operation is applied to each element of a
vector:
v_2 <- seq(1, 5)

v_2**2

• “To vectorise” a task means to write it in a way that operations are applied
to atomic vectors → in R, you should do that whenever possible

• A slower alternative are loops, which we learn about later and which are
unavoidable in certain situations

Vectorisation

20

Claudius Gräbner-Radkowitsch

I. Create a vector with the numbers from -2 to 19 (step size: 0.75)
II. Create an index vector for this first vector (note: an index vector is a vector

with all possible indices of the original vector)
III. Compute the log of each element of the first vector using vectorisation.

Anything that draws your attention?
IV. What happens if you concatenate vectors of different types using c()?

Can you derive a systematization?
• Remember that you can check for the type of an atomic vector using
typeof()

Intermediate exercises

21

Claudius Gräbner-Radkowitsch

Lists

22

Claudius Gräbner-Radkowitsch

• Among the more specific vector types, we will learn about factors and
data frames later

Basic object types in R

23

TRUE, FALSE 1,2,3,… 0.1, 1.0, 2.9,… “One”, “Hello”,…

Atomic vectors Lists (‘generic vectors’)

logical integer double character

Vectors

Objects

NULL

Claudius Gräbner-Radkowitsch

• The second major type of vectors → sometimes called generic vectors

• Difference to atomic vectors: lists may contain objects of different types

• Thus, the type of a list is always…
l_1 <- list(c(1,2), c("a", "b"), c(TRUE, FALSE, FALSE)); typeof(l_1)

• Lists can be complex → get an overview using str():

Lists

24

Number of list elements
Types of the elements

Length of the elements Preview of the elements

Claudius Gräbner-Radkowitsch

• The different elements of lists can be named:
l_2 <- list("numbers"=c(1,2),
 "letters"=c("a", "b"),
 "logics"=c(TRUE, FALSE, FALSE))

• You can retrieve the names using names():

names(l_2)

• You can subset the list using the names:
l_2["letters"]

• And access the elements of the sublists with [[:

l_2[["letters"]]

• Alternatively use the shortcut $: l_2$letters

Naming and indexing of lists

25

Claudius Gräbner-Radkowitsch

• There are two very important differences to atomic vectors:

• Vectorisation does not work for lists

• Indexing works differently for lists

• To illustrate the first issue compare:
v_ <- c(1, 2, 3); 2*v_

l_ <- list(1, 2, 3); 2*l_

• To illustrate the latter:
typeof(l_[1])

typeof(l_[[1]])

• Lists are fundamental to more complex data structures we will encounter later

Practical differences to atomic vectors

26

Claudius Gräbner-Radkowitsch

• There are two “strange” data types: NA and NULL

• NA is used to represent absent elements of vectors

• Happens frequently when vectors contain observations

• Many functions behave differently when NAs are present (remember na.rm!):

mean(c(1,2,NA)) ; mean(c(1,2,NA), na.rm = TRUE)

• You test for NA using is.na():

is.na(c(1, 2, NA))

• To check whether a vector contains missing values, use anyNA():

anyNA(c(1,2,NA))

Final remarks on basic object types

27

Claudius Gräbner-Radkowitsch

• There are two “strange” data types: NA and NULL

• NULL is in fact a data type in itself, but in practice its best thought of as a
vector of length zero:
c()

typeof(NULL)

length(NULL)

is.null(NULL)

• You might use NULL mainly in two instances:

• Represent an empty vector of arbitrary type

• Represent and absent vector (≠ NA, which represents absent elements of vectors)

Final remarks on basic object types

28

Claudius Gräbner-Radkowitsch

• Create a list that has three named elements: "A", "B", and "C"

• The element "A" should contain the square root of the numbers form -2 to
8 (step size: 1)

• The element "B" should contain the log of numbers between 2 and 4 (step
size: 0.5)

• The element "C" should contain letters from a1 to g7 (hint: use the pre-
defined vector letters and the function paste())

Intermediate exercises

29

Claudius Gräbner-Radkowitsch

• The central take-aways concern:

• How to test for and transform these types: typeof(), is.*(), as.*()

• How to index them: [, [[, $

• How to create typical instances: rep(), paste(), seq()

• We learned about vectorisation and its attractiveness in R

• We also encountered “strange” types such as NA, NULL and NaN

Wrap up basic object types

30

Vectors

Atomic vectors Lists (‘generic vectors’)

logical integer double character

NULL

Objects

Claudius Gräbner-Radkowitsch

• Next time we will learn about two more advanced object types: factors
and data.frames

• We will learn how our knowledge about the basic object types helps us to
deal with more advanced types, and how they relate to each other

Summary and outlook

31

Tasks until next session:
1. Fill in the quick feedback survey on Moodle
2. Read the tutorials posted on the course page
3. Do the exercises provided on the course page and discuss problems

and difficulties via the Moodle forum

