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• Its at the foundation of many more advanced tool and very widely used!

What is simple linear regression?
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Statistical data analysis

Descriptive analysis 
Describe a population directly

Inferential analysis 
Describe a population using a 

sample

Prediction 

Keep  as black box̂f ( ⋅ )
Explanation 

Unpack ̂f ( ⋅ )

Model-based analysis 

y = f(X) + ϵ

Non-parametricParametric

Semi-Supervised ML

Reinforcement learning

Supervised ML 

For each input variable , there 
is an output variable 

xi ∈ X
yi ∈ y

Unsupervised ML
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I. Understand what simple linear regression can be used for 

II. Understand the concept of ordinary least squares 

III. Learn how to conduct a simple lineare regression in R

Goals for today
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The sequence of 
parametric modelling

4
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• In the most general terms, modelling data using a parametric approach can 
be broken down into several steps:

The general sequence of parametric modelling 

5

• Lets illustrate this via a short example

Theoretical pre-
considerations

Explore data & choose a model family

Identify the best 
model instance

Interpret the 
fitted model
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The general sequence of modelling 
An example
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Explore data & choose a 
model family

Identify the best 
model instance

Interpret the fi


Theoretical pre-
considerations

Theoretical law of demand: higher 
price comes with lower demand Obtain survey data on beer 

consumption and beer 
prices!

What is the relationship between beer 
consumption and beer price?

D (p) :
∂D ( ⋅ )

∂p
< 0
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The general sequence of modelling 
An example
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Explore data & choose a 
model family

Identify the best 
model instance

Interpret the fi


Theoretical pre-
considerations
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Seems to be a linear 
relationship → work with the 

family of linear models: 
C = a + b ⋅ p
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The general sequence of modelling 
An example
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Explore data & choose a 
model family

Identify the best 
model instance

Interpret the fi


Theoretical pre-
considerations

Two parameters:
 

 and 

C = a + b ⋅ P

a b

Choose parameter such that 
model describes data best
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The general sequence of modelling 
An example
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Explore data & choose a 
model family

Identify the best 
model instance

Interpret the fitted 
model

Theoretical pre-
considerations
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For every increase of 1 unit in 
price, there is an associated 
decrease of, on average, 9.84 

units of consumption.
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Simple linear regression
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• Important pre-considerations: 

• What is your subject of interest? 

• Do you want to engage in an prediction-oriented or explanatory analysis? 

• If the latter, what are your main hypothesis? 

• What is the data you need and how was it collected? 

• Example: 

• We are interested in what drives beer consumption 

• We first want to explore the survey data we obtained to derive hypotheses, 
which we then want to test

Modelling data - general workflow 
1. Theoretical pre-considerations 
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• Based on our theoretical considerations we need to obtain data 

• Then we need to inspect the data and think about how it could be modelled 

• Assume we have a data set with survey results on beer consumption 

• First need to take a glimpse at the data set:

Modelling data - general workflow 
2. Data exploration and choice of family
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• We have 30 observations of five 
variables, all of which are numeric 
• We should also have a look at common 

descriptive statistics

Note: beer_data is available as DataScienceExercises::beer
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• The function skimr::skim() provides a nice statistical summary 

• We can complement this via some easy visualisations* (geom_jitter() and 
geom_violin())

Modelling data - general workflow 
2. Data exploration and choice of family
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It seems feasible and interesting to look at the relationship between consumption, price and income

*: Click on plot to get R code.

https://gist.github.com/graebnerc/8c35584881b87667e547a76d3342a194
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• To get more information and choose the right model family, it is always a 
good idea to visualise the data 

• Since both variables are numeric, we choose a scatter plot

Modelling data - general workflow 
2. Data exploration and choice of family
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• There seems to be a strong and linear 
relationship 

• This suggests to choose the family of 
linear models 

• It has the general form: 

y = a + b ⋅ x
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• The family of linear models has the general form  

• In the context of economic modelling, we use the following notation:

y = a + b ⋅ x
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Modelling data - general workflow 
2. Data exploration and choice of family

y = β0 + β1x1 + ϵ

Dependent variable  
(Synonyms: response variable, regressand, 

explained variable, outcome variable)

Independent variable 
(Synonyms: predictor, regressor, 

explanatory variable, input variable)

Error term

Parameters to be estimated

• The error term absorbs all effects on y not covered by x → unobservable & probabilistic  

• Everything on the left side of the = is called the left-hand-side (LHS) 

• Everything on the right side of the = is called the right-hand-side (RHS)
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• So far we have chosen a family of models:  

• It has two parameters for which we need to choose particular values:  and  

• Depending on the values for  and , these relationships can look very 
differently:

y = β0 + β1 ⋅ x
β0 β1

β0 β1
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Modelling data - general workflow 
3. Fitting a model

• Most members of the linear family are 
clearly of the mark 

• Fitting a model ~ choose the member 
of the family that fits the data best  

→ criterion needed!50
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• Fitting a model means to choose the 'best' member of a model family 

• How would you, for instance, evaluate the following models?

Modelling data - general workflow 
3. Fitting a model
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Modelling data - general workflow 
3. Fitting a model
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• Each of the model is a particular realisation 
of the general form  

• If we talk about a particular model 
instance, where values for  and  were 
chosen, we write  and 

y = β0 + β1x

β0 β1̂β0
̂β1
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• Such model gives a prediction for each value of  

• We call this prediction a fitted value and denote it by  

• A good model would give fitted values  that are close to the true values  
• Thus, a reasonable cost function would consider the difference between true and fitted 

values: the residuals 

x
̂y = ̂β0 + ̂β1x

̂y y
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• A good model has fitted values that are 
close to the actual values 

• Choose the parameters such that the 
residuals are small 

• Do not prioritise particular observations 
→ consider all residuals

Modelling data - general workflow 
3. Fitting a model
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The actual value that has been 
observed when : xi = x1 yi

The fitted value that is 
predicted by the 

model for : xi = x1 ̂yi

}The residual r1 = y1 − ̂y1
 
 
 

x1 : 1.78
y1 : 81.7
̂y1 : 68.9

r1 = 12.8

• Can we simply sum up all the residuals? 
• We need to square the residuals first → otherwise positive and negative residuals 

would cancel each other out 
• The sum of squared residuals is called the RSS: residual sum of squares
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• General approach in machine learning: choose parameters by first defining 
a cost function, and then to minimise it 

• Cost function: maps chosen parameters onto a cost measure 

• Here we could use the RSS as a cost measure 

• More widespread is, however, the Root Mean Squared Error (RMSE): 

  

 

RSS =
N

∑
i=1

(yi − ̂yi)2

MSE =
∑N

i=1 (yi − ̂yi)2

N

RMSE = MSE =
∑N

i=1 (yi − ̂yi)2

N

Modelling data - general workflow 
3. Fitting a model
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• Fitting a model: choose the 'best' member of a model family 
• Best fit is given by the model with the smallest RMSE → the minimisation problem of ordinary 

least squares (OLS)

Modelling data - general workflow 
3. Fitting a model

21

50

60

70

80

2.0 2.5 3.0 3.5 4.0
price

co
ns
um

pt
io
n

5
6
7
8
9
10

RMSE

50

60

70

80

2.0 2.5 3.0 3.5 4.0
price

co
ns
um

pt
io
n



Claudius Gräbner-Radkowitsch

• Fitting a model: choose the 'best' member of a model family 
• Best fit is given by the model with the smallest RMSE → the minimisation problem of ordinary 

least squares (OLS)

Modelling data - general workflow 
3. Fitting a model
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• Fitting a model: choose the 'best' member of a model family 
• Best fit is given by the model with the smallest RMSE → the minimisation problem of ordinary 

least squares (OLS)

Modelling data - general workflow 
3. Fitting a model
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• Fitting a model means to choose the 'best' member of a model family 
• To evaluate these models we look at their RMSE → the best fit is given by the model with the 

smallest RMSE → the minimisation problem of ordinary least squares (OLS)

Modelling data - general workflow 
3. Fitting a model

24
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Note: For the linear case, the best model can actually computed using a formula!
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• If the family of linear models is adequate for the modelling purpose at hand 
we can use the function lm() to find the model with the smallest RMSE: 

lm(formula = consumption~price, data = beer_data_red)

Modelling data - general workflow 
3. Fitting a model
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• The immediate output of lm() 
is already quite informative:

The regression formula with the 
dependent variable on the LHS, 
and the independent variable on 

the RHS of the ~

The data set used; the 
variables in the formula 
must correspond to the 
variables in the data set
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• Usually we want to have more information about our regression result than 
the function lm() provides 

• The classical option is to call summary() on the resulting object 

• A neat alternative is moderndive::get_regression_table()

Modelling data - general workflow 
4. Evaluate and interpret the model

26

Refer to sampling 
distribution
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Modelling data - general workflow 
4. Evaluate and interpret the model

27

• The intercept is often practically irrelevant: hypothetical consumption when  

• The coefficient of price (or any explanatory variable) is more important:

price = 0

For every increase of 1 unit in price, there is an associated 
decrease of, on average, 9.84 units of consumption.

• Our model is only about association, not about causation 
• Our model does not say anything about particular comparisons, but the average 

over all possible cases

Refer to sampling 
distribution
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• Consider the data set DataScienceExercises::beer, but focus on the 
relationship between consumption and income 

• Keep in mind that we have used the following functions: 

• dplyr::glimpse(), skimr::skim(), lm() and 
moderndive::get_regression_table()

Your turn!

28
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•  and  are different: the former is the true value, the latter the estimate 

• This distinction refers to the fundamental distinction between a population and 
a sample 

• Similarly: residuals as the sample equivalent to the population error term 

• We will discuss this in more detail after our session on sampling 

• In this context we also need to distinguish the estimator and the estimate 

• An estimator is way to compute the estimate: its a formula or an algorithm 

• The estimate is the result of this procedure: for each sample, it corresponds to 
a single number

βi
̂βi

29

Linear regressions: some final remarks
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The sampling 
distribution

30
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• Reasoning analogous to examples from session on sampling theory 

• Standard error: measure for sampling distribution of estimate for price 

• In reality: only one sample → standard error must be estimated 

• Consider a stylised example with a simulated population

The sampling distribution of OLS estimates

31

Refer to sampling 
distribution
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• Create a true population according to  

• With ,  and :

y = β0 + β1x + ϵ

N = 5000 β0 = 1000 β1 = 3.5

The sampling distribution of OLS estimates

32
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• Now draw 500 samples with  and estimate the linear model 

• Obtain a  and  for each sample → look at sampling distribution

n = 150

̂β0
̂β1
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The sampling distribution of OLS estimates 
The result of drawing 1000 samples with n = 150
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The sampling distribution of OLS estimates 
Relation to the single estimation
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Sampling distributions of the estimated parameters

term estimate std_error statistic p_value lower_ci upper_ci
intercept 997.39 16.87 59.12 0 964.05 1030.73
labor 3.54 0.06 62.50 0 3.42 3.65

For a normally distributed , 95% of 
all values fall within 

X
X̄ + 1.96 ⋅ SD

The single estimate for the 
parameter of interest The estimate for the SD of 

the sampling distribution

Probability to observe the estimate if 
in the true population βi = 0
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Model evaluation

35



Claudius Gräbner-Radkowitsch

• We identified the best model by minimising the RMSE → method of ordinary 
least squares (OLS) 

• Identifying the model this way is based on a number of assumptions 

• Model evaluation: test of whether these assumptions were satisfied  

• Example: one central assumption of the simple OLS regression is that the 
relationship between the two variables is linear 

• What would happen if this assumption was not met?

36

Evaluating models - assumptions
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• The French sociologist Emile Durkheim distinguished two types of suidices: 

• Moral confusing and a lack of social embeddednes in modern societies 

• Neglect of individual desires in archaic societies 

• This could be summarised in a u-shaped relationship between social 
cohesion and the likelihood of suicides

37

• This is not a linear relationship, and fitting a linear 
model would lead to very misleading results 
• Here the estimate for  would be zero → suggests no 

systematic relationship 

• Its always important to visualise the data and then 
choose the right family

β1

Evaluating models - assumptions
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• We will learn more about the underlying assumptions and how to test for 
them in a later session 

• At this point we want to focus on one additional measure for the goodness 
of fit of a model: its  

• The  measures how much variation in the explained variable can be 
explained by the variation of the explanatory variable 

• Lets look at an artificial example:

R2

R2
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wm2`bi #2`2+?M2M rB` β̂1,

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2
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β̂1 = 0.308
0.1 = 3.08
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• How to measure the total variation 
in the explained variable? 

• Deviations from its mean value: 
total sum of squares: 

•   TSS = ∑n
i=1 (yi − ȳ)2

Evaluating models - explanatory power
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• TSS as the total variation in the outcome variable:  

• We separate the total variation into two parts:

TSS = ∑n
i=1 (yi − ȳ)2

39

• Explained sum of squares (ESS): the variation 
explained by our model 

• Residual sum of squares (RSS): the variation left 
unexplained  

• RSS: the sum of squared residuals: 

 

• Residuals : observable counterpart to the error term  

• ESS: squared deviations between the fitted values and : 

RSS = ∑n
i=1 r2

i

r ϵ

ȳ

ESS = ∑n
i=1 ( ̂yi − ȳ)2

Evaluating models - explanatory power
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• We separate the total variation into two parts: 

 

• The  is defined as the share of explained variation: 

 

• In general, a higher  comes with higher explanatory power 

• A very high , however, should also make you suspicious 

• But in general, its a good indication for the usefulness of your model

TSS = ESS + RSS

R2

R2 = ESS
TSS = 1 − RSS

TSS

R2

R2

40

Evaluating models - explanatory power
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• Consider again our example of beer consumption and the linear model you 
fitted before (i.e. on beer consumption and income).  

• Now compute the  of your model by hand.  

• Remember: 

•  

•  

•  
• Any lm-object has the elements residuals and fitted.values, through 

which you can obtain the respective vectors 

• How can you interpret your ?  

• Bonus: compare it to the  of the model including price instead of income. 
How would you interpret this?

R2

TSS = ∑n
i=1 (Yi − Ȳ )2

RSS = ∑n
i=1 e2

i

ESS = ∑n
i=1 ( ̂Yi − Ȳ )2

R2

R2

Exercise: computing R2

41
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Linear regression and 
nonlinear relationships

42
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• Linear regression is a parametric approach  

• Focus on linear models → assumes a linear relationship 

• Fitting a linear model to nonlinear relationships is misleading, except… 

• …we transform the data to make the relationship linear

Linear regression and nonlinear relationships

43
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Meaning: linearity 
in parameters

Code for the figures

https://gist.github.com/graebnerc/2696373159c2853ef28d1bc60d529dc8
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• How to decide whether transformation was successful? 

• The residuals should not show any structure → Tukey-Anscombe Plot 

• x-Axis: predicted values (predict()), y-axis: residuals (residuals()):

44
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Linear regression and nonlinear relationships 
The Tukey-Anscombe Plot

Code for the figures

https://gist.github.com/graebnerc/2696373159c2853ef28d1bc60d529dc8
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• Another very common transformation is taking logs → linearises otherwise 
exponential relationships:
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Linear regression and nonlinear relationships 
Linearising exponential relationship with logs

Code for the figures

https://gist.github.com/graebnerc/2696373159c2853ef28d1bc60d529dc8
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• Not all relationships can be linearised 

• Sometimes linear regression is just not the right tool! 

• Transformation of the variables must be considered in 
interpretation:

46

Model Equation Interpretation

Level-Level Change in x by 1 unit comes with change in y by     units

Log-Level Change in x by 1 unit comes with change in y by 100

Level-Log Change in x by 1% comes with change in y by

Log-Log Change in x by 1% comes with change in y by

y = β0 + β1x1 β1

ln (y) = β0 + β1x1 ⋅ β1 %

ln (y) = β0 + β1 ln (x1) β1 %

y = β0 + β1 ln (x1) β1/100

Linear regression and nonlinear relationships 
Interpreting models with transformed variables: logs
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• Not all relationships can be linearised 

• Sometimes linear regression is just not the right tool! 

• Transformation of the variables must be considered in 
interpretation:
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The change in the slope 
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Linear regression and nonlinear relationships 
Interpreting models with quadratic terms
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Summary & outlook
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• We applied the general workflow of empirical modelling in the context of 
simple linear regression:

Summary and outlook

49

Explore data & choose a model family

Identify the best 
model instance

Interpret the 
fitted model

Theoretical pre-
considerations

• The idea is to use the family of linear models with two variables 

• Thus, SLR is used to study the association of two numerical variables 

• The idea is to fit a regression line that minimises the squared differences 
between the actual and fitted values → method of ordinary least squares
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• Using SLR makes sense if you are interested in a linear relationship 
between numerical variables 

• Thus, theoretical considerations and exploration of your data is necessary 

• Also: transforming your data might be needed to make relationship linear 

• SLR is built upon the family of linear models, which in the context of 
economic applications is specified as  

• In this context we introduced the concepts of the LHS and RHS of a regression 
equation, as well as the terms parameters, dependent & independent variables, 
and the error term 

• We defined the best model instance of the family of linear models as the 
one that has the smallest RMSE for the data at hand 

• To find the particular model, we used the method of OLS

y = β0 + β1x1 + ϵ

Summary and outlook

50
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• OLS produces concrete estimates  and  by minimising the RMSE for 
the data at hand 

• Once estimated, we can use our model to create predictions: the fitted values 
 

• The deviations from the fitted and actual values are called residuals → 
sample equivalent to the theoretical error term 

• Once estimated, we can interpret the estimated values of our model 

• The model has no causal interpretation → its about associations 

• The OLS method is built upon assumptions, which we need to check for 
each application 

• There are other tools to assess our estimated model, such as its 

̂β0
̂β1

̂y = ̂β0 + ̂β1x

R2

Summary and outlook

51
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Appendix: 
Ordinary Least Squares (OLS) 

estimation

52
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• Above we argued that estimating a linear model means to identify the model 
instance with the smallest RMSE 

• Now we look at how this is being done in practice → the OLS method

Estimating a model using OLS

53
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• In principle we could minimise the loss function numerically 

• But this is very inefficient and dangerous 

• For the linear case, the best model can be derived analytically 

• This also allows us to derive some further properties of the model

Estimating a model using OLS 
The general idea

54

• The idea is to choose  and  such that 
the RSS gets minimised 

 
• Put mathematically:

β0 β1

RSS = ∑n
i=1 e2

i

e1

e2

e3

e4

e5

RSS = 2.35148

2.5

3.0

3.5

4.0

4.5

5.0

0.0 0.1 0.2 0.3 0.4 0.5
x

y

Residual Sum of Squares (RSS)

̂β0, ̂β1 = argminβ0,β1

n

∑
i=1

(yi − ̂yi)2
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• Since  this equals have: ̂yi = ̂β0 + ̂β1 ⋅ xi

55

̂β0, ̂β1 = argminβ0,β1

n

∑
i=1

(yi − ̂yi)2

̂β0, ̂β1 = argminβ0,β1

n

∑
i=1

(yi − ̂β0 + ̂β1 ⋅ xi)2

• With a little bit of algebra we can rearrange this expression to:

̂β1 =
∑n

i=1 (xi − x̄)(yi − ȳ)

∑n
i=1 (xi − x̄)2

̂β0 = ȳ − ̂β1x̄and

• All the variables are included in our data →  and  are identified̂β0
̂β1

Estimating a model using OLS 
Deriving the OLS estimator
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• Let us compute the estimated values  and 
 for our example data set by hand

̂β0̂β1

Estimating a model using OLS 
Exercise: computing the OLS estimator manually

56

̂β1 =
∑n

i=1 (xi − x̄)(yi − ȳ)

∑n
i=1 (xi − x̄)2

̂β0 = ȳ − ̂β1x̄

•  

•  

•  

•  

•  

•

x̄ = 0.3

ȳ = 3.614

∑n
i=1 (xi − x̄)(yi − ȳ) = (0.1 − 0.3)(2.58 − 3.614) + . . . = 0.308

∑n
i=1 (xi − x̄)2 = (0.1 − 0.3)2 + (0.2 − 0.3)2 + . . . = 0.1

̂β1 = 0.308
0.1 = 3.08

̂β0 = ȳ − ̂β1x̄ = 3.614 − 3.08 ⋅ 0.3 = 2.69
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• Let us now verify our result by 
computing  and  using lm():̂β0

̂β1

Estimating a model using OLS 
Exercise: computing the OLS estimator manually

•  

•  

•  

•  

•  

•

x̄ = 0.3

ȳ = 3.614

∑n
i=1 (xi − x̄)(yi − ȳ) = (0.1 − 0.3)(2.58 − 3.614) + . . . = 0.308

∑n
i=1 (xi − x̄)2 = (0.1 − 0.3)2 + (0.2 − 0.3)2 + . . . = 0.1

̂β1 = 0.308
0.1 = 3.08

̂β0 = ȳ − ̂β1x̄ = 3.614 − 3.08 ⋅ 0.3 = 2.69

β̂0 = 2.69

Slope: β̂1 = 3.08
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• The OLS estimation method has some great mathematical properties 

• E.g., if you can only obtain a sample of the population of interest, the estimates 
obtained via OLS are unbiased and efficient 

• These properties hing, however, on some assumptions, e.g. a linear 
relationship between  and  

• In practice you always need to test whether your assumptions are met 

• Otherwise there is no way to tell whether the estimates obtained via OLS are 
not terribly misleading → see session on regression diagnostics

y x

Estimating a model using OLS 
Final remarks on the OLS method
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