Simple linear regression

Applied data science with R

Prof. Dr. Claudius Gräbner-Radkowitsch Europa-University Flensburg, Department of Pluralist Economics www.claudius-graebner.com @ClaudiusGraebner | claudius@claudius-graebner.com

What is simple linear regression?

• Its at the foundation of many more advanced tool and very widely used!

Goals for today

- I. Understand what simple linear regression can be used for
- II. Understand the concept of ordinary least squares
- III. Learn how to conduct a simple lineare regression in R

The sequence of parametric modelling

The general sequence of parametric modelling

• In the most general terms, modelling data using a parametric approach can be broken down into several steps:

• Lets illustrate this via a short example

What is the relationship between beer consumption and beer price?

Theoretical law of demand: higher price comes with lower demand

$$D\left(p\right):\frac{\partial D\left(\cdot\right)}{\partial p}<0$$

Obtain survey data on beer consumption and beer prices!

Seems to be a linear relationship \rightarrow work with the family of linear models: $C = a + b \cdot p$

(Intercept) price 86.406 -9.835

Simple linear regression

Modelling data - general workflow 1. Theoretical pre-considerations

- Important pre-considerations:
 - What is your subject of interest?
 - Do you want to engage in an prediction-oriented or explanatory analysis?
 - If the latter, what are your main hypothesis?
 - What is the data you need and how was it collected?

• Example:

- We are interested in what drives beer consumption
- We first want to explore the survey data we obtained to derive hypotheses, which we then want to test

- Based on our theoretical considerations we need to obtain data
- Then we need to inspect the data and think about how it could be modelled
- Assume we have a data set with survey results on beer consumption
 - First need to take a **glimpse** at the data set:

- We have 30 observations of five variables, all of which are numeric
 - We should also have a look at common descriptive statistics

Note: beer_data is available as DataScienceExercises::beer

- The function skimr::skim() provides a nice statistical summary
 - We can complement this via some easy visualisations* (geom_jitter() and geom_violin())

It seems feasible and interesting to look at the relationship between consumption, price and income

- To get more information and choose the right model family, it is always a good idea to visualise the data
 - Since both variables are numeric, we choose a scatter plot

- There seems to be a strong and **linear** relationship
- This suggests to choose the family of linear models
- It has the general form:

$$y = a + b \cdot x$$

- The family of linear models has the general form $y = a + b \cdot x$
- In the context of economic modelling, we use the following notation:

- The error term absorbs all effects on y not covered by $x \rightarrow$ unobservable & probabilistic
- Everything on the left side of the = is called the left-hand-side (LHS)
- Everything on the right side of the = is called the right-hand-side (RHS)

- So far we have chosen a family of models: $y = \beta_0 + \beta_1 \cdot x$
 - It has two parameters for which we need to choose particular values: eta_0 and eta_1
- Depending on the values for β_0 and $\beta_1,$ these relationships can look very differently:

- Most members of the linear family are clearly of the mark
- Fitting a model ~ choose the member of the family that fits the data best
 - \rightarrow criterion needed!

- Fitting a model means to choose the 'best' member of a model family
 - How would you, for instance, evaluate the following models?

- Each of the model is a particular realisation of the general form $y = \beta_0 + \beta_1 x$
- If we talk about a particular model instance, where values for β_0 and β_1 were chosen, we write $\hat{\beta}_0$ and $\hat{\beta}_1$

- Such model gives a prediction for each value of x
 - We call this prediction a **fitted value** and denote it by $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
- A good model would give fitted values \hat{y} that are close to the true values y
 - Thus, a reasonable cost function would consider the difference between true and fitted values: the **residuals**

- A good model has fitted values that are close to the actual values
- Choose the parameters such that the residuals are small
- Do not prioritise particular observations
 → consider all residuals

- Can we simply sum up all the residuals?
 - We need to square the residuals first → otherwise positive and negative residuals would cancel each other out
 - The sum of squared residuals is called the **RSS**: residual sum of squares

- General approach in machine learning: choose parameters by first defining a cost function, and then to minimise it
- Cost function: maps chosen parameters onto a cost measure
 - Here we could use the RSS as a cost measure
 - More widespread is, however, the **Root Mean Squared Error** (RMSE):

$$RSS = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
$$MSE = \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N}$$
$$RMSE = \sqrt{MSE} = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N}}$$

- Fitting a model: choose the 'best' member of a model family
 - Best fit is given by the model with the smallest RMSE → the minimisation problem of ordinary least squares (OLS)

- Fitting a model: choose the 'best' member of a model family
 - Best fit is given by the model with the smallest RMSE → the minimisation problem of ordinary least squares (OLS)

- Fitting a model: choose the 'best' member of a model family
 - Best fit is given by the model with the smallest RMSE → the minimisation problem of ordinary least squares (OLS)

- Fitting a model means to choose the 'best' member of a model family
 - To evaluate these models we look at their RMSE → the best fit is given by the model with the smallest RMSE → the minimisation problem of ordinary least squares (OLS)

Note: For the linear case, the best model can actually computed using a formula!

 If the family of linear models is adequate for the modelling purpose at hand we can use the function 1m() to find the model with the smallest RMSE:

Modelling data - general workflow 4. Evaluate and interpret the model

- Usually we want to have more information about our regression result than the function 1m() provides
 - The classical option is to call summary() on the resulting object
- A neat alternative is moderndive::get_regression_table()

```
> linmod_c_price <- lm(</pre>
   formula = consumption~price, data = beer_data_red)
+
> moderndive::get_regression_table(linmod_c_price)
# A tibble: 2 \times 7
                                                                Refer to sampling
           estimate std_error statistic p_value lower_ci upper_ci
  term
                                                                   distribution
                       <db1>
                                <dbl> <dbl>
                                              <db1>
                                                         <db1>
            <db1>
  <chr>
                                 20.0
1 intercept 86.4
                      4.32
                                            0
                                                 77.5
                                                         95.3
                                            0
           -9.84
                       1.38
                                 -7.15
                                                 -12.7
                                                         -7.02
2 price
```


Modelling data - general workflow 4. Evaluate and interpret the model

>	linmod_c_p	orice <- l	.mC					
+	<pre>+ formula = consumption~price, data = beer_data_red)</pre>							
<pre>> moderndive::get_regression_table(linmod_c_price) # A tibble: 2 × 7</pre> Refer to sampling								
			std_error	statistic	p_value	lower_ci	upper_ci	distribution
	<chr></chr>	<db1></db1>	<db1></db1>	<db1></db1>	<dbl></dbl>	<db1></db1>	<db1></db1>	
1	intercept	86.4	4.32	20.0	0	77.5	95.3	
2	price	-9.84	1.38	-7.15	0	-12.7	-7.02	

- The intercept is often practically irrelevant: hypothetical consumption when price = 0
- The coefficient of price (or any explanatory variable) is more important:

For every increase of 1 unit in price, there is an **associated decrease** of, **on average**, 9.84 units of **consumption**.

- Our model is only about association, not about causation
- Our model does not say anything about particular comparisons, but the average over all possible cases

Your turn!

- Consider the data set DataScienceExercises::beer, but focus on the relationship between consumption and income
- Keep in mind that we have used the following functions:
 - dplyr::glimpse(), skimr::skim(), lm() and moderndive::get_regression_table()

Linear regressions: some final remarks

- β_i and $\hat{\beta}_i$ are different: the former is the true value, the latter the estimate
 - This distinction refers to the fundamental distinction between a population and a sample
 - Similarly: residuals as the **sample equivalent** to the population error term
 - We will discuss this in more detail after our session on sampling
- In this context we also need to distinguish the estimator and the estimate
 - An estimator is way to compute the estimate: its a formula or an algorithm
 - The estimate is the result of this procedure: for each sample, it corresponds to a single number

The sampling distribution

The sampling distribution of OLS estimates

<pre>> linmod_c_price <- lm(+ formula = consumption~price, data = beer_data_red) > moderndive::get_regression_table(linmod_c_price) # A tibble: 2 × 7 Refer to sampling</pre>							
term	estimate	std_error	statistic	p_value	lower_ci	upper_ci	distribution
<chr></chr>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<db1></db1>	<dbl></dbl>	
1 intercept	86.4	4.32	20.0	0	77.5	95.3	
2 price	-9.84	1.38	-7.15	0	-12.7	-7.02	

- Reasoning analogous to examples from session on sampling theory
 - Standard error: measure for sampling distribution of estimate for price
- In reality: only one sample \rightarrow standard error must be estimated
- Consider a stylised example with a simulated population

The sampling distribution of OLS estimates

- Create a true population according to $y = \beta_0 + \beta_1 x + \epsilon$
 - With N = 5000, $\beta_0 = 1000$ and $\beta_1 = 3.5$:

- Now draw 500 samples with n = 150 and estimate the linear model
 - Obtain a \hat{eta}_0 and \hat{eta}_1 for each sample o look at sampling distribution

The sampling distribution of OLS estimates The result of drawing 1000 samples with n = 150

Parameter	Mean	SD
beta_0 beta_1	$1001.232 \\ 3.496$	$\begin{array}{c} 18.960\\ 0.063\end{array}$

The sampling distribution of OLS estimates Relation to the single estimation

Model evaluation

Evaluating models - assumptions

- We identified the best model by minimising the RMSE → method of ordinary least squares (OLS)
 - Identifying the model this way is based on a number of assumptions
- Model evaluation: test of whether these assumptions were satisfied
- **Example**: one central assumption of the simple OLS regression is that the relationship between the two variables is **linear**
- What would happen if this assumption was not met?

Evaluating models - assumptions

- The French sociologist Emile Durkheim distinguished two types of suidices:
 - Moral confusing and a lack of social embeddednes in modern societies
 - Neglect of individual desires in archaic societies
- This could be summarised in a u-shaped relationship between social cohesion and the likelihood of suicides

- This is not a linear relationship, and fitting a linear model would lead to very misleading results
 - Here the estimate for β_1 would be zero \rightarrow suggests no systematic relationship
- Its always important to visualise the data and then choose the right family

Evaluating models - explanatory power

- We will learn more about the underlying assumptions and how to test for them in a later session
- At this point we want to focus on one additional measure for the goodness of fit of a model: its R^2
 - The R^2 measures how much variation in the explained variable can be explained by the variation of the explanatory variable
 - Lets look at an artificial example:

datensatz					
#>		x	77		
	1		у 2.58		
			3.05		
	_	••-			
	_		4.98		
	_		3.63		
#>	5	0.5	3.83		

- How to measure the total variation in the explained variable?
 - Deviations from its mean value: total sum of squares:
 - $TSS = \sum_{i=1}^{n} (y_i \bar{y})^2$

Evaluating models - explanatory power

- TSS as the total variation in the outcome variable: $TSS = \sum_{i=1}^{n} (y_i \bar{y})^2$
- We separate the total variation into two parts:

- Explained sum of squares (ESS): the variation explained by our model
- **Residual sum of squares** (RSS): the variation left unexplained
- RSS: the sum of squared residuals:

$$RSS = \sum_{i=1}^{n} r_i^2$$

- Residuals r: observable counterpart to the error term ϵ
- ESS: squared deviations between the fitted values and \bar{y} :

$$ESS = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

Evaluating models - explanatory power

• We separate the total variation into two parts:

TSS = ESS + RSS

• The R^2 is defined as the share of explained variation:

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$$

- In general, a higher R^2 comes with higher explanatory power
- A very high R^2 , however, should also make you suspicious
- But in general, its a good indication for the usefulness of your model

Exercise: computing R^2

- Consider again our example of beer consumption and the linear model you fitted before (i.e. on beer consumption and income).
 - Now compute the R^2 of your model by hand.
- Remember:
 - $TSS = \sum_{i=1}^{n} (Y_i \bar{Y})^2$
 - $RSS = \sum_{i=1}^{n} e_i^2$
 - $ESS = \sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2$
 - Any 1m-object has the elements residuals and fitted.values, through which you can obtain the respective vectors
- How can you interpret your R^2 ?
- Bonus: compare it to the R^2 of the model including price instead of income. How would you interpret this?

Linear regression and nonlinear relationships

Linear regression and nonlinear relationships

- Linear regression is a parametric approach
 - Focus on linear models → assumes a linear relationship

• Fitting a linear model to nonlinear relationships is misleading, except...

• ...we transform the data to make the relationship linear

Model 1: SuicideProb = $\beta_0 + \beta_1 COH + \epsilon$

Model 2: SuicideProb = $\beta_0 + \beta_1 COH + \beta_2 COH^2 + \epsilon$

Claudius Gräbner-Radkowitsch

Meaning: linearity in parameters

Linear regression and nonlinear relationships The Tukey-Anscombe Plot

- How to decide whether transformation was successful?
- The residuals should not show any structure → Tukey-Anscombe Plot
 - x-Axis: predicted values (predict()), y-axis: residuals (residuals()):

Linear regression and nonlinear relationships Linearising exponential relationship with logs

 Another very common transformation is taking logs → linearises otherwise exponential relationships:

Claudius Gräbner-Radkowitsch

Linear regression and nonlinear relationships Interpreting models with transformed variables: logs

- Not all relationships can be linearised
 - Sometimes linear regression is just not the right tool!
- Transformation of the variables must be considered in interpretation:

Model	Equation	Interpretation	
Level-Level	$y = \beta_0 + \beta_1 x_1$	Change in x by 1 unit comes with change in y by eta_1 units	
Log-Level	$\ln\left(y\right) = \beta_0 + \beta_1 x_1$	Change in x by 1 unit comes with change in y by 100 \cdot eta_1 %	
Level-Log	$y = \beta_0 + \beta_1 \ln \left(x_1 \right)$	Change in x by 1% comes with change in y by $eta_1/100$	
Log-Log	$\ln(y) = \beta_0 + \beta_1 \ln(x_1)$	Change in x by 1% comes with change in y by $eta_1\%$	

Linear regression and nonlinear relationships Interpreting models with quadratic terms

- Not all relationships can be linearised
 - Sometimes linear regression is just not the right tool!
- Transformation of the variables must be considered in interpretation:

	Model 1	Model 2		
(Intercept)	0.084	0.000		
Social cohesion	0.000	0.000		
I(`Social cohesion`^2)		1.000		
R2	0.000	0.996		
The change in the slope of Social Cohesion				

Summary & outlook

Summary and outlook

• We applied the general **workflow** of empirical modelling in the context of simple linear regression:

- The idea is to use the family of linear models with two variables
- Thus, SLR is used to study the association of two numerical variables
- The idea is to fit a regression line that minimises the squared differences between the actual and fitted values → method of ordinary least squares

Summary and outlook

- Using SLR makes sense if you are interested in a **linear relationship** between numerical variables
 - Thus, theoretical considerations and exploration of your data is necessary
 - Also: transforming your data might be needed to make relationship linear
- SLR is built upon the family of linear models, which in the context of economic applications is specified as $y = \beta_0 + \beta_1 x_1 + \epsilon$
 - In this context we introduced the concepts of the LHS and RHS of a regression equation, as well as the terms parameters, dependent & independent variables, and the error term
- We defined the best model instance of the family of linear models as the one that has the smallest **RMSE** for the data at hand
 - To find the particular model, we used the method of **OLS**

Summary and outlook

- OLS produces concrete estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ by minimising the RMSE for the data at hand
 - Once estimated, we can use our model to create predictions: the fitted values $\hat{y}=\hat{\beta}_0+\hat{\beta}_1 x$
- The deviations from the fitted and actual values are called residuals \rightarrow sample equivalent to the theoretical error term
- Once estimated, we can interpret the estimated values of our model
 - The model has **no causal interpretation** \rightarrow its about associations
- The OLS method is built upon assumptions, which we need to check for each application
- There are other tools to assess our estimated model, such as its R^2

Appendix: Ordinary Least Squares (OLS) estimation

Estimating a model using OLS

- Above we argued that estimating a linear model means to identify the model instance with the smallest RMSE
 - Now we look at how this is being done in practice \rightarrow the OLS method

Estimating a model using OLS The general idea

- In principle we could minimise the loss function numerically
 - But this is very inefficient and dangerous
- For the linear case, the best model can be derived analytically
 - This also allows us to derive some further properties of the model
- The idea is to choose β_0 and β_1 such that the RSS gets minimised

$$RSS = \sum_{i=1}^{n} e_i^2$$

• Put mathematically:

$$\hat{\beta}_{0}, \hat{\beta}_{1} = \operatorname{argmin}_{\beta_{0}, \beta_{1}} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

Estimating a model using OLS Deriving the OLS estimator

$$\hat{\beta}_{0}, \hat{\beta}_{1} = \operatorname{argmin}_{\beta_{0}, \beta_{1}} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

• Since $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 \cdot x_i$ this equals have:

$$\hat{\beta}_0, \hat{\beta}_1 = \operatorname{argmin}_{\beta_0, \beta_1} \sum_{i=1}^n (y_i - \hat{\beta}_0 + \hat{\beta}_1 \cdot x_i)^2$$

• With a little bit of algebra we can rearrange this expression to:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \quad \text{and} \quad \hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x}$$

• All the variables are included in our data $ightarrow \hat{eta}_0$ and \hat{eta}_1 are identified

Estimating a model using OLS Exercise: computing the OLS estimator manually

- Let us compute the estimated values $\hat{\beta}_0$ and $\hat{\beta}_1$ for our example data set by hand

Jropa-Universität

lensburg

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x}$$

$$\begin{array}{l} \mathbf{x} \quad \mathbf{x} \quad \mathbf{y} \\ \mathbf{x} \quad \mathbf{y} \\ \mathbf{x} \quad \mathbf{y} \\ \mathbf{x} \quad \mathbf{z} \\ \mathbf$$

Estimating a model using OLS Exercise: computing the OLS estimator manually

• $\bar{x} = 0.3$

# A tibble: 5 × 2	n = 0.5				
\mathbf{x} \mathbf{y}	• $\bar{y} = 3.614$				
<pre><dbl> <dbl> 1 0.1 2.58</dbl></dbl></pre>	• $\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$	$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = (0.1 - 0.3)(2.58 - 3.614) + \dots = 0.308$ $\sum_{i=1}^{n} (x_i - \bar{x})^2 = (0.1 - 0.3)^2 + (0.2 - 0.3)^2 + \dots = 0.1$			
2 0.2 3.05	• $\sum_{i=1}^{n} (x_i - \bar{x})^2 = (0$				
3 0.3 4.98 4 0.4 3.63	• $\hat{\beta}_1 = \frac{0.308}{0.1} = 3.08$				
5 0.5 3.83	• $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 3.6$	$14 - 3.08 \cdot 0.3 = 2.69$			
- Let us now verify a computing \hat{eta}_0 and	A 5	5.0 4.5			
Call: lm(formula = y ~ x, data = data_set)		4.0 Slope: $\hat{\beta}_1 = 3.08$ 3.5 $\hat{\beta}_0 = 2.69$			
Coefficients: (Intercept) 2.69 3.0	x 8				
		X			

> data_set

Claudius Gräbner-Radkowitsch

Estimating a model using OLS Final remarks on the OLS method

- The OLS estimation method has some great mathematical properties
 - E.g., if you can only obtain a sample of the population of interest, the estimates obtained via OLS are **unbiased** and **efficient**
- These properties hing, however, on some **assumptions**, e.g. a linear relationship between *y* and *x*
 - In practice you always need to test whether your assumptions are met
 - Otherwise there is no way to tell whether the estimates obtained via OLS are not terribly misleading → see session on regression diagnostics

