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What is simple linear regression?

Statistical data analysis

' o

Inferential analysis

Supervised ML

For each input variable x; € X, there
Describe a population using a

Is an output variable y; € y

sample
Prediction Explanation
Keep f ( - ) as black box Unpack f ()
|3 X
Model-based analysis
y=/fX)+e

KX

Parametric

e [ts at the foundation of many more advanced tool and very widely used!
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Goals for today

|, Understand what simple linear regression can lbe used for
II.  Understand the concept of ordinary least squares

ll. Learn how to conduct a simple lineare regression in R

’ Europa-Universitat Claudius Grabner-Radkowitsch
A Flensburg



The sequence of
parametric modelling




The general sequence of parametric modelling

* |n the most general terms, modelling data using a parametric approach can
be broken down into several steps:

/> Explore data & choose a model family -\

Theoretical pre- Identify the best
considerations model instance

'\ Interpret the /

fitted model

o |ets illustrate this via a short example
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The general sequence of modelling
An example

Theoretical pre-
considerations

What is the relationship between beer
consumption and beer price?

\ 4

Theoretical law of demand: higher
price comes with lower demand

oD ( -
D(p): al(?)<0

Obtain survey data on beer
consumption and beer
prices!

>

’ Europa-Universitat . . ] ,
-A Flensburg Claudius Grabner-Radkowitsch



The general sequence of modelling

An example
Explore data & choose a
model family
E-GO °
. e °* ML ILE Seems to be a linear
. relationship — work with the
PN family of linear models:
Price (USD

C=a+b-p
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The general sequence of modelling
An example

Two parameters: |
Identn‘y_the best
C — d —I— b . P model instance

aand b
80 - °
l CC) 70 -
Choose parameter such that 8
model describes data best B 6 -

Call: °

Im(formula = consumption ~ price, data = beer_data_red) 270 275 3?0 375 4?0

Coefficients: price

(Intercept) price

86.406 -9.835
/ _ o oy oo . . '
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The general sequence of modelling
An example

> linmod_c_price <- Lm(
+ formula = consumption~price, data = beer_data_red)
> moderndive: :get_regression_table(linmod_c_price)

A tibble: 2 x . Interpret the fitted
term estimate model

intercept 86.4
price -9.84 80 - ¢

~
o
1

For every increase of 1 unit in
price, there is an associated

decrease of, on average, 9.84 504
units of consumption.

consumption
(@)
o

2.0 2.5 3.0 3.5 4.0
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Simple linear regression
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Modelling data - general workflow
1. Theoretical pre-considerations

 |mportant pre-considerations:
* What is your subject of interest?
* Do you want to engage in an prediction-oriented or explanatory analysis?
* |f the latter, what are your main hypothesis”?

* What is the data you need and how was it collected?

e Example:
* We are interested in what drives beer consumption

* We first want to explore the survey data we obtained to derive hypotheses,
which we then want to test

’ Europa-Universitat Claudius Grabner-Radkowitsch
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Modelling data - general workflow
2. Data exploration and choice of family

e Based on our theoretical considerations we need to obtain data
 Then we need to inspect the data and think about how it could be modelled

 Assume we have a data set with survey results on beer consumption

e First need to take a glimpse at the data set:

> glimpse(beer_data)

Rows: 30

Columns: 5

$ consumption <dbl- 81.7, 56.9, 64.1, 65.4, 6.. e \Ne have 30 observations of five

5 price <abl>1.78, 2.27, 2.21, 2.15, 2. variables, all of which are numeric

$ price_liquor <dbl> 6.95, 7.32, 6.96, 7.18, 7..

$ price_other <dbl- 1.11, 0.67, 0.83, 0.75, 1. e We shogld also. havealook at common

$ income <dbl> 25088, 26561, 25510, 2715.. descriptive statistics

Note: beer _data is available as DataScienceExercises: :beer

L 4 Europa-Universitét Claudius Grabner-Radkowitsch 12
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Modelling data - general workflow
2. Data exploration and choice of family

e The function skimr: :skim() provides a nice statistical summary

o We can complement this via some easy visualisations* (geom_jitter() and
geom _violin())

80 4.0

40000

— Data Summary
Values

Name beer_data 70 — o
Number of rows 30 35000 0®
Number of columns 5 ) — 50
60

Column type frequency: 30000 * e 25

numeric 5 - * | ¥

. 2.0
Group variables None 25000
consumption income price price_liquor price_other

— Variable type: numeric

skim_variable n_missing complete_rate mean sd p0@ p25 p50 p75 pl00 hist
1 consumption 0 1 56.1 7.86 44 .3 51.6 54.9 00.8 81 7 e
2 price ) 1 3.08 0.642 1.78 2.53 3.11 3.68 4.07 el
3 price_liquor ) 1 8.37 0.770 6.95 7.9 8.38 8.94 9 5?2 miallm
4 price_other 0 1 1.25 0.298 0.67 1.09 1.18 1.48 1.73 limill
5 income ) 1 32602. 4542. 25088 28888 32457 36516. 41593 [T ™

It seems feasible and interesting to look at the relationship between consumption, price and income

’ Europa-Universitat Claudius Grabner-Radkowitsch *: Click on plot to get R code. 13
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Modelling data - general workflow
2. Data exploration and choice of family

e Jo get more information and choose the right model family, it is always a
good idea to visualise the data

80

Consumptions (litres)

50

e Since both variables are numeric, we choose a scatter plot

2.0

2.5

3.0
Price (USD)

* There seems to be a strong and linear
relationship

e This suggests to choose the family of
linear models

. |t has the general form:

vy=a+b-x

’ Europa-Universitat

-/

Flensburg

Claudius Grabner-Radkowitsch

14



Modelling data - general workflow
2. Data exploration and choice of family

 The family of linear models has the generalformy =a + b - x

* |n the context of economic modelling, we use the following notation:

ﬂ

Parameters to be estimated y — ﬁo + lBl'xl + €

[

Dependent variable Independent variable Srrorterm
(Synonyms: response variable, regressand, (Synonyms: predictor, regressor,
explained variable, outcome variable) explanatory variable, input variable)

e The error term absorbs all effects on y not covered by x = unobservable & probabilistic
e Everything on the left side of the = is called the left-hand-side (LHS)
e Everything on the right side of the = is called the right-hand-side (RHS)

’ Europa-Universitat Claudius Grébner-Radkowitsch 15
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Consumptions (litres)

Modelling data - general workflow
3. Fitting a model

So far we have chosen a family of models: y = fy + [ - X

* It has two parameters for which we need to choose particular values: fy and 3,

Depending on the values for f, and f;, these relationships can look very
differently:

 Most memlbers of the linear family are
clearly of the mark

e Fitting a model ~ choose the member
of the family that fits the data best

— criterion needed!

.

-/
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Modelling data - general workflow
3. Fitting a model

e Fitting a model means to choose the 'best’ member of a model family

* How would you, for instance, evaluate the following models”

80

g 70
Py ® o ®
5 o9 ®
= °
: ¢ . ’
O ’* e
® ()
e o° %4 o
50 o o
® o
P ®
o
2.0 2.5 3.0 3.5 4.0
Price (USD)
/ _ o oy oo . - '
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Modelling data - general workflow
3. Fitting a model

(]
80

e Each of the model is a particular realisation
of the general form y = Sy + fx

N
o

. e |f we talk about a particular model
instance, where values for f, and f; were

¢ . chosen, we write 5 and f,

Consumptions (litres)
(o]
o

o
o
[ ]
o

2.0 25 3.0 3.5 4.0
Price (USD)

e Such model gives a prediction for each value of x
« We call this prediction a fitted value and denote it by y = ,30 + ,BAlx

A good model would give fitted values y that are close to the true values y

e Thus, a reasonable cost function would consider the difference between true and fitted
values: the residuals

’ Europa-Universitat Claudius Grabner-Radkowitsch 18
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80

~
o

Consumptions (litres)
(e}
o

50

Modelling data - general workflow
3. Fitting a model

The actual value that has been

observed when x; = x;: y;

e A good model has fitted values that are
x;:1.78
close to the actual values
y; 2 81.7
$,:68.9
r=128| ¢ Choose the parameters such that the

H

>The residual r; = y; — yl
5_J

) o ©
o0 °
[
o ®o ®
o [ )
The fitted value that is °
predicted by the o of
model for x; = x;: ), ® °
2.0 25 3.0
Price (USD)

3.5

residuals are small

. e Do not prioritise particular observations
— consider all residuals

4.0

e Can we simply sum up all the residuals”?

* We need to square the residuals first = otherwise positive and negative residuals
would cancel each other out

e The sum of squared residuals is called the RSS: residual sum of squares

’ Europa-Universitat
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Modelling data - general workflow
3. Fitting a model

* General approach in machine learning: choose parameters by first defining
a cost function, and then to minimise it

e (Cost function: maps chosen parameters onto a cost measure
* Here we could use the RSS as a cost measure

* More widespread is, however, the Root Mean Squared Error (RMSE):

N
RSS= Y (v, %)
=1

N AN\2
VSE - > (vi—9)
N

\/25\;1 (yl _yi)z
RMSE = +/MSE = Y

’ Europa-Universitat Claudius Grabner-Radkowitsch
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Modelling data - general workflow
3. Fitting a model

e Fitting a model: choose the 'best’ member of a model family

e Best fit is given by the model with the smallest RMSE — the minimisation problem of ordinary
least squares (OLS)

e  J
80 - 80 -
RMSE
§" 10 5]
g o B
> 8 S
& 60 - . 2 50 -
o 5 S .
&) 5 & = X
o °
° o o ®e o
50 = 50 i . S
§ ®
(]
2.0 25 3.0 35 4.0
price
W Europa-Universitat : 3y .
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Modelling data - general workflow
3. Fitting a model

e Fitting a model: choose the 'best’ member of a model family

e Best fit is given by the model with the smallest RMSE — the minimisation problem of ordinary
least squares (OLS)

Varying the intercept Varying the intercept
L
80
RMSE
- 7.5
w g 7.0
2 £ 65
= B ~
o 2 6.0
g 55
Q
5.0
“_‘D' 0 52'.5 85:."; 8 ' = 9';".0 92‘.5
intercept
/ _ o og oo ) y )
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Modelling data - general workflow
3. Fitting a model

e Fitting a model: choose the 'best’ member of a model family

e Best fit is given by the model with the smallest RMSE — the minimisation problem of ordinary
least squares (OLS)

Varying the slope Varying the slope

RMSE
consumption

price

slope
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Modelling data - general workflow
3. Fitting a model

e Fitting a model means to choose the 'best’ member of a model family

e Jo evaluate these models we look at their RMSE — the best fit is given by the model with the
smallest RMSE — the minimisation problem of ordinary least squares (OLS)

\l

S
11 =
2 il
S _q0- 9 S
9p] 60 -
7 S
&)
—-11 -
_12_
80 85 90 2.0 25 3.0 3.5 4.0
intercept orice
Note: For the linear case, the best model can actually computed using a formulal
’ Europa-Universitat : : _ :
-‘ Flensburg Claudius Grabner-Radkowitsch



Modelling data - general workflow

3. Fitting a model

e [f the family of linear models is adequate for the modelling purpose at hana

we can use the function 1Im() to find t

ne model with the smallest RMSE:

Im(formula = consumption~price

, |data = beer_data red)

The regression formula with the

dependent variable on the LHS,

and the independent variable on
the RHS of the ~

e The immediate output of 1m()

IS already quite informative:
Call:

Im(formula = consumption ~ price, data = beer_data_red)

Coefficients:
(Intercept) price

86.4006 -9.835
\

The data set used; the
variables in the formula
must correspond to the
variables in the data set

> head(beer_data_red, 2)
# A tibble: 2 x 2
consumption price
<dbl> <dbl>
81.7 1.78
56.9 2.27

umptons (litres
o)

2
Price (USD)
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Modelling data - general workflow
4. Evaluate and interpret the model

e Usually we want to have more information albout our regression result than
the function 1Im() provides

e The classical option is to call summary () on the resulting object

e A neat alternative is moderndive: :get regression table()

> linmod_c_price <- 1Im(
+ formula = consumption~price, data = beer_data_red)
> moderndive: :get_regression_table(linmod_c_price)
‘ 7 Refer to sampling

term estimate std_error statistic p_value lower_ci upper_ci distribution
[ <dbl> <dbl> <dbl> <dbl> <dbl>
intercept 86.4 4.32 20.0 ) 77.5 95.3
price -9.84 1.38 -7.15 ) -12.7 -7.02
% :uropa-Universitit Claudius Grabner-Radkowitsch 26
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Modelling data - general workflow
4. Evaluate and interpret the model

> linmod_c_price <- 1Im(
+ formula = consumption~price, data = beer_data_red)

> moderndive: :get_regression_table(linmod_c_price) Refer to sampling

L P | '
CLODDLC

term estimate 'std_error statistic p_value lower_ci upper_ci distribution
chr: abl <dbl> <dbl> <dbl> <dbl> <dbl>

intercept 86.4 4.32 20.0 0 77.5 95.3

price -9.84 1.38 -7.15 ) -12.7 -7.02

* The intercept is often practically irrelevant: hypothetical consumption when price = 0

e The coefficient of price (or any explanatory variable) is more important:

For every increase of 1 unit in price, there is an associated
decrease of, on average, 9.84 units of consumption.

* Our model is only about association, not about causation

* Our model does not say anything about particular comparisons, but the average
over all possible cases

’ Europa-Universitat , . ] .
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Your turn!

e (Consider the data set DataScienceExercises: :beer, but focus on the
relationship between consumption and income

o Keep in mind that we have used the following functions:

e dplyr::glimpse(), skimr::skim(), 1m() and
moderndive: :get regression table()

’ Europa-Universitat Claudius Grabner-Radkowitsch
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Linear regressions: some final remarks

e [;and ,BAZ- are different: the former is the true value, the latter the estimate

* This distinction refers to the fundamental distinction between a population and
a sample

* Similarly: residuals as the sample equivalent to the population error term

* We will discuss this in more detall after our session on sampling

e |n this context we also need to distinguish the estimator and the estimate
* An estimator is way to compute the estimate: its a formula or an algorithm

* The estimate is the result of this procedure: for each sample, it corresponds to
a single number

’ Europa-Universitat Claudius Grabner-Radkowitsch 29
A Flensburg



The sampling
distribution




The sampling distribution of OLS estimates

>
+
>

linmod_c_price <- 1Im(
formula = consumption~price, data = beer_data_red)
moderndive: :get_regression_table(linmod_c_price)

term

Refer to sampling

estimate std_error statistic p_value lower_ci upper_ci distribution
| <dbl> <dbl> <dbl> <dbl> <dbl>
intercept 86.4 4.32 20.0 ) 77.5 95.3
price -9.84 1.38 -7.15 0 -12.7 -7.02

e Reasoning analogous to examples from session on sampling theory

e Standard error: measure for sampling distribution of estimate for price

e |nreality: only one sample — standard error must be estimated

e (Consider a stylised example with a simulated population

’ Europa-Universitat
A Flensburg
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The sampling distribution of OLS estimates

» Create a true population accordingtoy = fy+ fix + €

. With N = 5000, 8, = 1000 and 3, = 3.5:

The simulated population

Distribution of output True relationship
200 3000

2500

150 . am -

2000

100

Number of firms
Firm output

1500

(o))
o

1000

1000 1500 2000 2500 3000 100 200 300 400 500
Firm output Labor input

« Now draw 500 samples with n = 150 and estimate the linear model

e Obtaina ,BAO and ,BAI for each sample — look at sampling distribution

’ Europa-Universitat Claudius Grabner-Radkowitsch
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The sampling distribution of OLS estimates
The result of drawing 1000 samples with 7 = 150

Sampling distributions of the estimated parameters
Bo=1000 B1=3.5

120

75

(o]
o

) %)
o S 50
S o S
© S
L L
30 25
0 — 0 - =
960 1000 1040 3.7
Bo B.
Parameter Mean SD
beta 0 1001.232 18.960
beta 1 3.496 0.003
’ Europa-Universitat Claudius Grabner-Radkowitsch 33
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The sampling distribution of OLS estimates
Relation to the single estimation

Sampling distributions of the estimated parameters
Bo= 1000 B1=38.5

120

75

©
o

Frequency
3
Frequency
3

N
o

30

3.7

0

960 1000 1040
A

The single estimate for the
parameter of interest

By

Bo
The estimate for the SD of

\ the sampling distribution
term estimate std error statistic p value lower ci upper ci
intercept 997.39 16.87 59.12 0 964.05 1030.73
labor 3.54 0.06 62.50 0 3.42 3.65
Probability to observe the estimate if For a normally distributed X, 95% of
in the true population ﬂi =0 all values fall within X + 1.96 - SD
% Ei’g{‘}’g&t’g’“"e““ét Claudius Grabner-Radkowitsch 34



Model evaluation
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Evaluating models - assumptions

o We identified the best model by minimising the RMSE — method of ordinary
least squares (OLS)

* |dentifying the model this way Is based on a number of assumptions
 Model evaluation: test of whether these assumptions were satisfied

o Example: one central assumption of the simple OLS regression is that the
relationship between the two variables is linear

 What would happen if this assumption was not met”?

’ Europa-Universitat Claudius Grabner-Radkowitsch 36
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Evaluating models - assumptions

* The French sociologist Emile Durkheim distinguished two types of suidices:

* Moral confusing and a lack of social embeddednes in modern societies

* Neglect of individual desires in archaic societies

e This could be summarised in a u-shaped relationship between social
cohesion and the likelihood of suicides

Suicides ala Durkheir e This is not a linear relationship, and fitting a linear
model would lead to very misleading results

uicides

» Here the estimate for f; would be zero = suggests no
systematic relationship

Probability for s
o

i * [ts always important to visualise the data and then
" social Cohesion Indicator - Choose the rlght famlly

’ Europa-Universitat Claudius Grabner-Radkowitsch
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Evaluating models - explanatory power

* We will learn more about the underlying assumptions and how to test for
them in a later session

o At this point we want to focus on one additional measure for the goodness
of fit of a model: its R*

» The R? measures how much variation in the explained variable can be
explained by the variation of the explanatory variable

5.0 ([

* |ets look at an artificial example:
5 y3—V=1.4

dat t -

rensate * How to measure the total variation ol y-3.614 Y5~ ¥ = 0.22

#> x 7y in the explained variable? -~ va-y=002 9

#> 1 0.1 2.58 o | . | |

#> 2 0.2 3.05 e Deviations from its mean value:

#> 3 0.3 4.98 total sum of squares: o TSS=3.3

#> 4 0.4 3.63 . ) ‘Y1_7=2_1 |

#> 5 0.5 3.83 ° TSS — zl_l (yl _ )_;) 250.0 0.1 0.2 0.3 0.4 05
B curopa-Universitst Claudius Grabner-Radkowitsch 38
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Evaluating models - explanatory power

e TSS as the total variation in the outcome variable: TSS = Z?zl (y,- — )7)2

e \We separate the total variation into two parts:

Residual Sum of Squares (RSS)
®

* Explained sum of squares (ESS): the variation
explained by our model

€3

€4

* Residual sum of squares (RSS): the variation left
RSS - 235148 unexplained

€2

€1

 RSS: the sum of squared residuals:

Explained Sum of Squares (ESS)
o

— n 2
- RSS= 2.7
Ys-Y .
V3614 e Residuals r: observable counterpart to the error term €
> Y3-Y
Sy | Y Vv « ESS: squared deviations between the fitted values and y:
3.0 . ESS =0.94864
—_ V" (5 5)\2
ESS = Zizl i =)
’ Europa-Universitat - > _ i
Al ricnshuig Claudius Grabner-Radkowitsch



Evaluating models - explanatory power

* \We separate the total variation into two parts:
1SS = ESS + RSS

« The R? is defined as the share of explained variation:

p2 _ ESS _ | _ RSS

7SS 7SS

e In general, a higher R? comes with higher explanatory power

e A very high R?, however, should also make YOU SUsSpicious

e But in general, its a good indication for the usefulness of your model

’ Europa-Universitat Claudius Grabner-Radkowitsch
A Flensburg
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Exercise: computing R 2

e (Consider again our example of beer consumption and the linear model you
fitted before (i.e. on beer consumption and income).

» Now compute the R? of your model by hand.

* Remember:
- TSS =3, (Y.— Y)?
. RSS=Y" &
« £ESS = Zi=1 (Yl- —Y)?

* Any 1m-object has the elements residuals and fitted.values, through
which you can obtain the respective vectors

e How can you interpret your R??

e Bonus: compare it to the R? of the model Including price instead of income.

How would you interpret this?

’ Europa-Universitat Claudius Grabner-Radkowitsch
A Flensburg
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nonlinear relationships




Linear regression and nonlinear relationships

. . , Meaning: linearity
e Linear regression is a parametric approach / n parameters

* Focus on linear models — assumes a linear relationship

e Fitting a linear model to nonlinear relationships is misleading, except...

* ...we transform the data to make the relationship linear

Suicides a la Durkheim Suicides a la Durkheim Suicides a la Durkheim
: P
“5 P L
‘é{ .’f r-f&{. 0.2
f;“’; ’s?' - . e,s::;"':: S
% K F b : ‘“?W‘ s
z ¥ I s e 5 o
2 ¢ s 8 3
: k3 ¢ E o &
& &i’?} > & sl
n:;}‘; 1”
;. 3
% L 0.0
R
AR St ~0.50 -0.25 0.00 0.25 0.50
Social cohesion
Social cohesion Socia?l.?ohesion (;quuared
=== Model 1 === Model 2
Model 1: SuicideProb = fy+ ;COH + € Model 2: SuicideProb = f3,+ f;COH + 3,COH* + ¢
”I i Eigggsu?g"'vefs'tat Claudius Grabner-Radkowitsch Code for the figures 43


https://gist.github.com/graebnerc/2696373159c2853ef28d1bc60d529dc8

Linear regression and nonlinear relationships
The Tukey-Anscombe Plot

e How to decide whether transformation was successful?

e The residuals should not show any structure = Tukey-Anscombe Plot

o Xx-Axis: predicted values (predict()), y-axis: residuals (residuals()):

TA plot (model 1) TA plot (model 2)

0.01

0.1

Residuals

4 .
729

0.00 | P SHE ¢
XY N \

Residuals

0.0

—-0.01

-0.1
0.00 0.05 0.10 0.15 0.20 0.25

0.083579  0.083580  0.083581 0.083582  0.083583
Fitted values Fitted values

Code for the figures

’ Europa-Universitat . . ] ,
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Linear regression and nonlinear relationships
Linearising exponential relationship with logs

e Another very common transformation is taking logs — linearises otherwise
exponential relationships:

Income and life expectancy Income and life expectancy (log-log) Income and life expectancy
;: 85
[
[ ) .'
[J
[ ]
3 S 3
3 3 g7
% .. ‘;)_) %) ®
o0 = 3
@ @
e
.. [ J ..
° d °
[ Y [ ]
Ok 20k 30k 40k 50k 7 8 9 10 10k 20k 30k
GDP per capita (PPP) GDP per capita (PPP, log) GDP per capita (PPP)
TA plot (model 1) TA plot (model 2)
‘ 0.1 °
% .g 4 ° ° * *"
¥ (L) e ° o ° ° °
#.‘% oq ¢ S oo, o g °* % LN W
o 8, o ° .'"’o&. @ 00 o % ooy et
% o ® e i ° g o ° °® :"r s oo ®
@ . PY o ° o 2 o Py ° o Py
o PR ° ° o d ° i °
.. ]
[ ] ° [ ]
o0
o
[ ]
o o
5 . . 4.25 .
Fitted values Fitted values
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Linear regression and nonlinear relationships
Interpreting models with transformed variables: logs

* Not all relationships can be linearised

e Sometimes linear regression is just not the right tool!

e TJransformation of the variables must be considered Iin

interpretation:
Model Equation Interpretation
Level-Level y = :BO + :lel Change in x by 1 unit comes with change in y by f; units
Log-Level In (y) — '50 + :lel Change in x by 1 unit comes with change in y by 100- 3, %
Level-Log y = pfy+ p;1In (x1> Change in x by 1% comes with change iny by /100
Log-Log In ()’) = ,B() + ,51 In (xl) Change in x by 1% comes with change iny by #; %
’ Europa-Universitat : - : :
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Linear regression and nonlinear relationships

Interpreting models with quadratic terms

* Not all relationships can be linearised

e Sometimes linear regression is just not the right tool!

e TJransformation of the variables must be considered Iin

interpretation:
Suicides a la Durkheim Model 1
(Intercept) 0.084
Social cohesion 0.000

Probability for suicide

|(" Social cohesion A2)

R2 0.000

0.0

-0.50 -0.25 0.00 0.25 0.50
Social cohesion

Model 2

0.000
0.000
1.000

A
0.996

The change in the slope

— Model 1 =— Model 2 of Social Cohesion
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Summary & outlook
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Summary and outlook

 We applied the general workflow of empirical modelling in the context of
simple linear regression:

/-P Explore data & choose a model family -\

Theoretical pre- |dentify the best
considerations model instance

¥~ | Interpretthe /

fitted model

* The idea is to use the family of linear models with two variables

* Thus, SLR is used to study the association of two numerical variables

 The idea is to fit a regression line that minimises the squared differences
between the actual and fitted values = method of ordinary least squares

’ Europa-Universitat Claudius Grabner-Radkowitsch
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Summary and outlook

e Using SLR makes sense if you are interested in a linear relationship
between numerical variables

* Thus, theoretical considerations and exploration of your data is necessary

* Also: transforming your data might be needed to make relationship linear

e SLRis built upon the family of linear models, which in the context of
economic applications is specified as y = f, + f1x; + €

* |n this context we introduced the concepts of the LHS and RHS of a regression
equation, as well as the terms parameters, dependent & independent variables,
and the error term

* \We defined the best model instance of the family of linear models as the
one that has the smallest RMSE for the data at hand

e To find the particular model, we used the method of OLS

’ Europa-Universitat Claudius Grabner-Radkowitsch
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Summary and outlook

OLS produces concrete estimates ,BAO and ,BAl by minimising the RMSE for
the data at hand

* Once estimated, we can use our model to create predictions: the fitted values
y=po+ p1x

The deviations from the fitted and actual values are called residuals —
sample equivalent to the theoretical error term

Once estimated, we can interpret the estimated values of our model

* The model has no causal interpretation — its about associations

The OLS method is built upon assumptions, which we need to check for
each application

There are other tools to assess our estimated model, such as its R?

-/
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Appendix:
Ordinary Least Squares (OLS)
estimation
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Estimating a model using OLS

* Above we argued that estimating a linear model means to identify the model
instance with the smallest RMSE

* Now we look at how this is being done in practice — the OLS method

\l

c
o O
S o
$ -1o- :
£ 60 -
o)
(@)
-11-
_12 -
80 85 90 2.0 25 3.0 35 4.0
intercept orice
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Estimating a model using OLS
The general idea

* |n principle we could minimise the loss function numerically

e But this is very inefficient and dangerous

* [For the linear case, the best model can be derived analytically

* This also allows us to derive some further properties of the model

Residual Sum of Squares (RSS)

 Theideais to choose f, and f; such that = -
the RSS gets minimised o
— n 2 4.0 e5
RSS =) _ € i _
e Put mathematically: |
n o RSS = 2.35148
A A . ~ 2 €1
, P = argmin Z =Y.
IBO IBI 9 Bo.fr (yz yz)
i=1
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Estimating a model using OLS
Deriving the OLS estimator

s , o2
Po- By = argmin, . > (=)
i=1
 Sincey; = ,BAO + ,BAl - X; this equals have:
n
s , AL A
Po- 1 = argmlnﬁoﬁlz ;i = Po+ b1+ x)
i=1

e With a little bit of algebra we can rearrange this expression to:

A z:l:l =00, —y) 2 = n —
ﬁl — Z?zl T and ﬁo —_ y — ﬁl.x

« All the variables are included in our data — ,BAO and ,BAI are identified
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Estimating a model using OLS
Exercise: computing the OLS estimator manually

Z?:l (x; — 00— y)
Z?zl (xi — X-)Z

y— X

o Let us compute the estimated values ,BAO and ,51
f, for our example data set by hand

A

Po

e x=0.3
> data_set

# A tibble: 5 x 2 y=3.614
X y

> (=0 —9) =(0.1-0.3)(2.58 = 3.614) +... = 0.308

> (=52 =(0.1-032+(02-03)?+...=0.1

: . B =28 =308
3.63 Lol

3.83 . fy=3—pB%=3.614-3.08-0.3 =2.69

S O O O© O T
Ul D W N P
R |
O
oo
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Estimating a model using OLS
Exercise: computing the OLS estimator manually

> data_set e x=0.3
# A tibble: 5 x 2
x y - y=13.614
01 2 58 ¢« X =D — ) =(0.1-03)2.58 - 3.614) +... = 0.308
0.2 3.05 « X2, (=%)7=(0.1-03+(02-03)>+...=0.
0.3 4.98 5 0308
0.4 3.63 P = =08
0.5 3.83 . fo= ,BAlx =3.614—3.08-0.3 = 2.69

* Let us now verify our result by
computing f, and f; using 1m():

40 Slope: |/3\1 =3.08
Call: >

Ilm(formula = y ~ x, data = data_set)

Coefficients:
(Intercept) X
2.69 3.08
/ _ o oy oo . . '
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Estimating a model using OLS
Final remarks on the OLS method

 The OLS estimation method has some great mathematical properties

* E.g., if you can only obtain a sample of the population of interest, the estimates
obtained via OLS are unbiased and efficient

e These properties hing, however, on some assumptions, e.g. a linear
relationship between y and x

* |n practice you always need to test whether your assumptions are met

e Otherwise there is no way to tell whether the estimates obtained via OLS are
not terribly misleading — see session on regression diagnostics
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