Data preparation

Applied Data Science using R

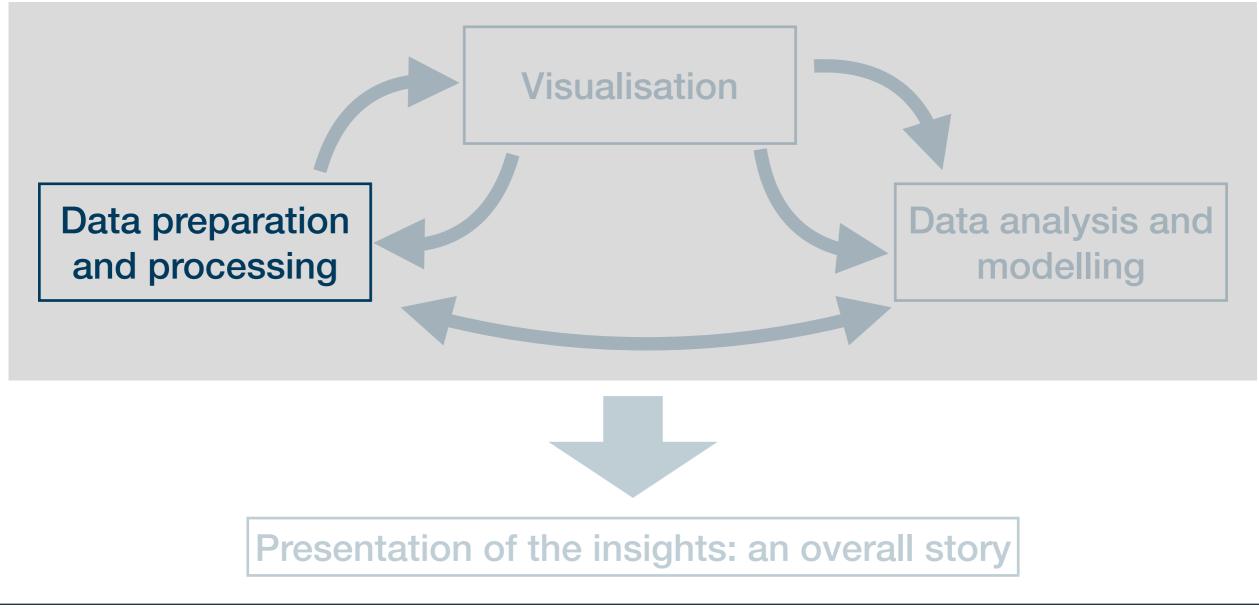
Prof. Dr. Claudius Gräbner-Radkowitsch Europa-University Flensburg, Department of Pluralist Economics www.claudius-graebner.com @ClaudiusGraebner | claudius@claudius-graebner.com

Goals for today

- I. Understand the concept of tidy data
- II. Get an overview over the most common transformation routines
- III. Master a number of functions from the tidyr and dplyr packages to address some of these challenges

The role of data preparation

- Importing and preparing is the most fundamental task in data science
 - It is also largely under-appreciated



What is tidy data?

The goal: tidy data

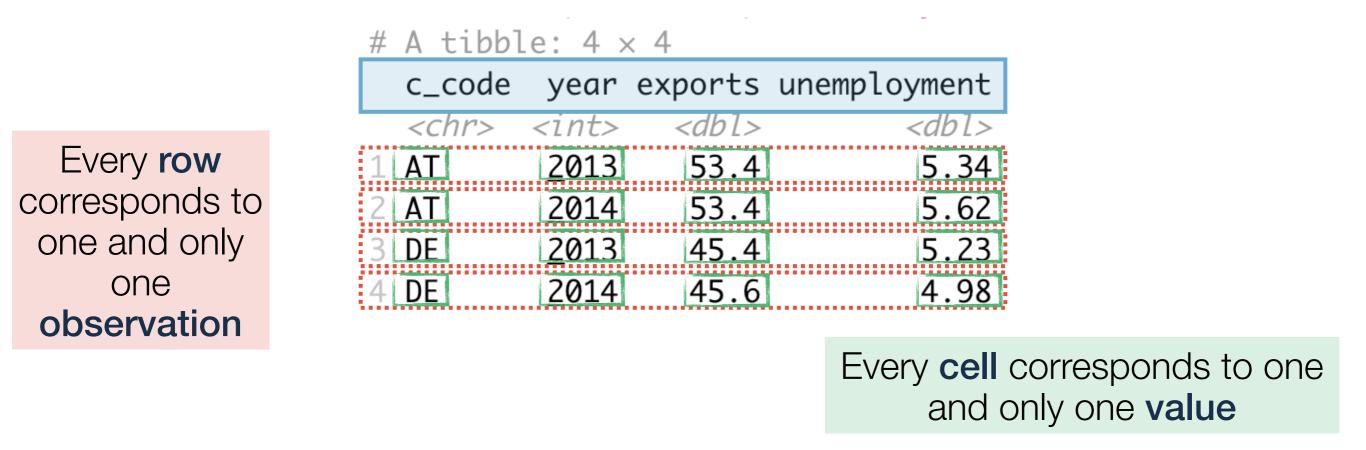
C Tidy datasets are all alike, but every messy dataset is messy in its own way.

Hadley Wickham

- Translation into plain English:
 - We find data sets in all kind of ***-up forms in the world
 - We must turn them into a form that's a good starting point for any further tasks
- Good thing: this form is unique and its called tidy

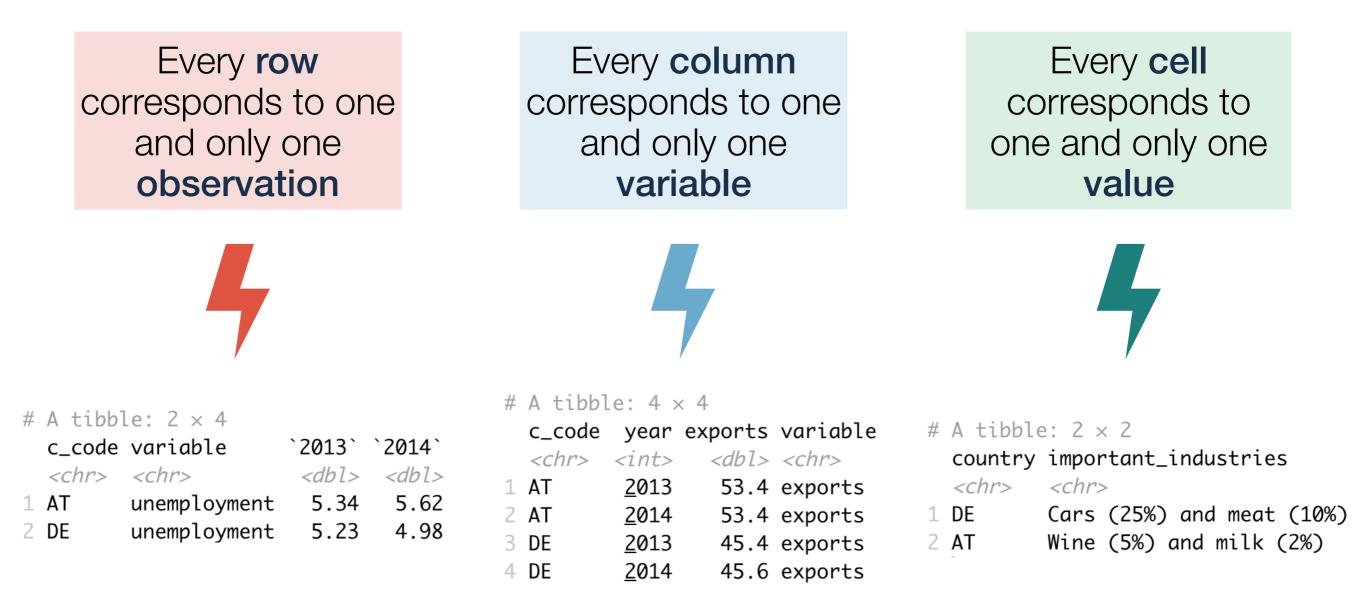
The goal: tidy data

Every **column** corresponds to one and only one **variable**



- Every data set that satisfies these three demands is called tidy
- Excellent start for basically every further task but maybe not the best way to represent data to humans

The goal: tidy data



• The goal of data wrangling is to turn such untidy data into tidy data

Recap questions

- What are the three demands a data set needs to fulfil to count as 'tidy'?
- Why do we care about tidy data at all?
- Are there plausible reasons for transforming a tidy data set into a non-tidy data set?
- Consider the following data sets. Are they tidy? If not, what would you need to change to make them tidy?

# A tibble	e: 1 × 4		
country	growth_2018	growth_2019	growth_2020
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<db1></db1>
1 Germany	1.09	1.06	-4.57

# A tibble: 6×2			ble: 6 × 3		
VarName	Value	beer_	consumption li	quor_price wat	er_price
<chr></chr>	<db1></db1>		<db1></db1>	<db1></db1>	<dbl></dbl>
1 beer_consumption	81.7	1	81.7	6.95	1.11
2 beer_price	1.78	2	56.9	7.32	0.67
3 personal_income	<u>25</u> 088	3	64.1	6.96	0.83
4 beer_consumption		4	65.4	7.18	0.75
5 beer_price	2.27	5	64.1	7.46	1.06
6 personal_income	26561	6	58.1	7.47	1.1

The way to tidy data

C Tidy datasets are all alike, but every messy dataset is messy in its own way.

Hadley Wickham

- The starting point to tidy data is always different
- The goal is always the same \rightarrow so are the steps: six main routines
- Two main packages are relevant:
 - tidyr provides functions for reshaping data into tidy format ('wrangling')
 - dplyr provides functions for manipulating data to extract desired information

Reshaping data from long to wide format (and vice versa)

# A tibble: 4 ×	4
-----------------	---

	c_code	year	exports	unemployment
	<chr></chr>	<int></int>	<db1></db1>	<dbl></dbl>
1	AT	<u>2</u> 013	53.4	5.34
2	AT	<u>2</u> 014	53.4	5.62
3	DE	<u>2</u> 013	45.4	5.23
4	DE	<u>2</u> 014	45.6	4.98

# A tibbl	e: 8 >	< 4	
c_code	year	variable	value
<chr></chr>	<int></int>	<chr></chr>	<dbl></dbl>
1 AT	<u>2</u> 013	exports	53.4
2 AT	<u>2</u> 013	unemployment	5.34
3 AT	<u>2</u> 014	exports	53.4
4 AT	<u>2</u> 014	unemployment	5.62
5 DE	<u>2</u> 013	exports	45.4
6 DE	<u>2</u> 013	unemployment	5.23
7 DE	<u>2</u> 014	exports	45.6
8 DE	<u>2</u> 014	unemployment	4.98

Filter rows according to conditions

С	_code	year	exports	unemployment	
<	chr>	<int></int>	<db1></db1>	<dbl></dbl>	
1 A	Т	<u>2</u> 013	53.4	5.34	
2 A	Т	<u>2</u> 014	53.4	5.62	
3 D	E	<u>2</u> 013	45.4	5.23	
4 D	E	<u>2</u> 014	45.6	4.98	
		_			

A tibble: 4×4

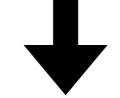
A tibble: 2 x 4

11	A CLUDI			
	c_code	year	exports	unemployment
	<chr></chr>	<int></int>	<db1></db1>	<dbl></dbl>
1	DE	<u>2</u> 013	45.4	5.23
2	DE	<u>2</u> 014	45.6	4.98

Select columns/variables

A tibble: 4×4

c_cc	ode year	exports	unemployment
<chr< td=""><td>r> <int></int></td><td><db1></db1></td><td><db1></db1></td></chr<>	r> <int></int>	<db1></db1>	<db1></db1>
1 AT	<u>2</u> 013	53.4	5.34
2 AT	<u>2</u> 014	53.4	5.62
3 DE	<u>2</u> 013	45.4	5.23
4 DE	<u>2</u> 014	45.6	4.98



A tibble: 4×3

	c_code	year	exports
	<chr></chr>	<int></int>	<db1></db1>
1	AT	<u>2</u> 013	53.4
2	AT	<u>2</u> 014	53.4
3	DE	<u>2</u> 013	45.4
4	DE	<u>2</u> 014	45.6

# A tibble: 2	\times	4
---------------	----------	---

C_0	code variab	le `2013`	`2014`
< C	hr> <chr></chr>	<db1></db1>	<dbl></dbl>
1 AT	unempl	oyment 5.34	5.62
2 DE	unempl	oyment 5.23	4.98



# A	tibbl	e:	2	\times	5
-----	-------	----	---	----------	---

	c_code	variable	`2013`	`2014`	change
	<chr></chr>	<chr></chr>	<dbl></dbl>	<db1></db1>	<db1></db1>
1	AT	unemployment	5.34	5.62	0.285
2	DE	unemployment	5.23	4.98	-0.25

Mutate or create variables

A tibble: 4×4

	c_code	year	exports	unemployment
	<chr></chr>	<int></int>	<db1></db1>	<db1></db1>
1	AT	<u>2</u> 013	53.4	5.34
2	AT	<u>2</u> 014	53.4	5.62
3	DE	<u>2</u> 013	45.4	5.23
4	DE	<u>2</u> 014	45.6	4.98

Group and summarise data

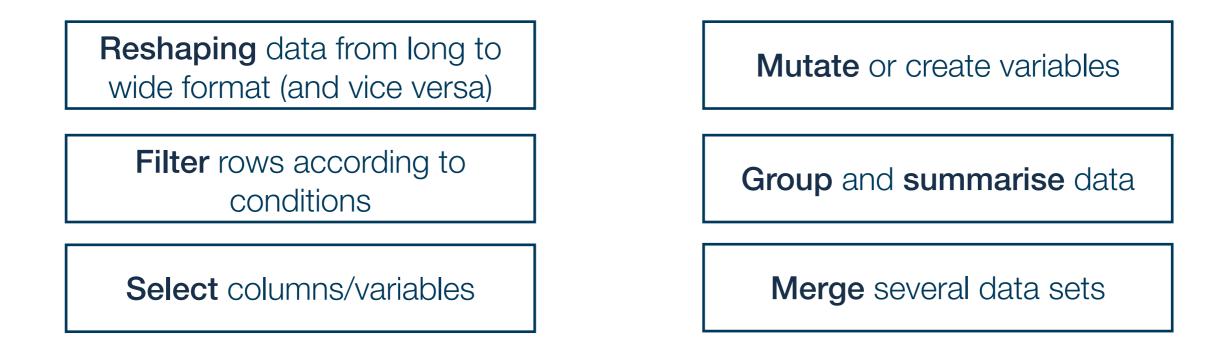
A tibble: 2×3

	c_code	exports_avg	unemployment_avg
	<chr></chr>	<dbl></dbl>	<db1></db1>
1	AT	53.4	5.48
2	DE	45.5	5.11

# A tibb	le: 4 × 3		#	A tibbl	e: 4 ×	3
c_code	year exp	ports		c_code	year u	nemployment
<chr></chr>	5	<db1></db1>		<chr></chr>	<int></int>	<db1></db1>
1 AT	<u>2</u> 013	53.4	1	AT	<u>2</u> 013	5.34
2 AT	<u>2</u> 014	53.4	2	AT	<u>2</u> 014	5.62
3 DE	<u>2</u> 013	45.4	3	DE	<u>2</u> 013	5.23
4 DE	<u>2</u> 014	45.6	4	DE	<u>2</u> 014	4.98
		bble: 4 ×		-		
		de year e	•	unemplo	-	
	<chr< td=""><td></td><td><dbl></dbl></td><td></td><td><dbl></dbl></td><td></td></chr<>		<dbl></dbl>		<dbl></dbl>	
	1 AT 2 AT	<u>2</u> 013 2014	53.4 53.4		5.34 5.62	
	2 AT 3 DE	<u>2</u> 014 <u>2</u> 013	45.4		5.02	
	4 DE	<u>2</u> 013 <u>2</u> 014	45.6		4.98	
		<u>7014</u>	+J.U		7.50	

Merge several data sets

• After having imported your data into R, you can usually make it tidy using a sequential combination of the following routines:



- With these six routines, you can prepare almost any messy data set
- This way you produce the inputs we used for visualisation...
 - ...and the inputs we will use for modelling

Recap questions

- What is the relation between long and wide data sets?
- Name the six main routines of data preparation and explain what they are used for.
- What does 'data wrangling' mean?
- Which two packages are used most frequently in the context of data preparation? What are their respective areas of application?

Six main routines for data preparation

Session content

• We will go through the following challenges via direct demonstration:

Filter rows according to conditions

Reshaping data from long to wide format (and vice versa)

Select columns/variables

Mutate or create variables

Group and summarise data

Merge several data sets

- For documentation purposes check out the lecture notes and the readings
 - The data sets used for the following exercises are all contained in wrangling_exercises_data.zip, which is available on the course homepage

Short recap on reshaping

• Take the data set data_raw_long and transform it as follows:

> data_raw_long country year variable value # A tibble: 4×4 1: Germany 2017 3.75 unemp year variable Germany Greece 2: Germany 2017 qdp 53071.46 <int> <chr> <db1> <db1> 3: Germany 2018 3.38 unemp 2017 unemp 21.5 3.75 4: Germany 2018 gdp 53431.39 <u>2</u>017 gdp <u>53</u>071. 28605. 5: Greece 2017 21.49 unemp <u>2</u>018 unemp 3.38 19.3 3 6: Greece 2017 gdp 28604.86 <u>2</u>018 gdp <u>53</u>431. <u>29</u>141. 19.29 4 7: Greece 2018 unemp 8: Greece 2018 gdp 29141.17

• Take the data set gini_join and transform it as follows:

<pre>> gini_join # A tibble: 2 × 3</pre>		# A tibble: 2 × 4					
		-		country	year	Indicator	Observation
country <chr></chr>	-	•		<chr></chr>	<int></int>	<chr></chr>	<db1></db1>
1 Greece			1	Greece	<u>2</u> 015	gini	33.1
2 Greece	_		2	Greece	<u>2</u> 017	gini	32.2

Short recap on manipulation basics

Consider the data set wine2dine from the package DataScienceExercises

- 1. Filter the data set such that it only contains white wines
- 2. Then remove the column 'kind'
- 3. Change the type of the column 'quality' into double
- 4. Divide the values in the columns 'alcohol' and 'residual sugar' by 100
- 5. Filter the data such that you only keep the wines with the highest quality score

Short recap on summarising and grouping

- What is the difference between dplyr::mutate() and dplyr::summarize()?
- Consider again the data set wine2dine from the package DataScienceExercises

- 1. Summarise the data by computing the mean alcohol, mean sugar, and mean quality of white and red wines
- 2. Compute a variable indicating how the quality of each wine deviates from the average quality of all wines.

Short recap on joining data sets

 Consider the data sets join_x.csv and join_y.csv and join them on the columns time and id using the functions left_join(), right_join(), and full_join()!

- Try for yourself what the function inner_join() does. How does it differ from left_join(), right_join(), and full_join()?
- Consider the data sets join_x.csv and join_y.csv and the function dplyr::full_join(). What is the difference of joining on columns time and id vs joining only on column id?

Helpful tools I: Pipes

Claudius Gräbner-Radkowitsch

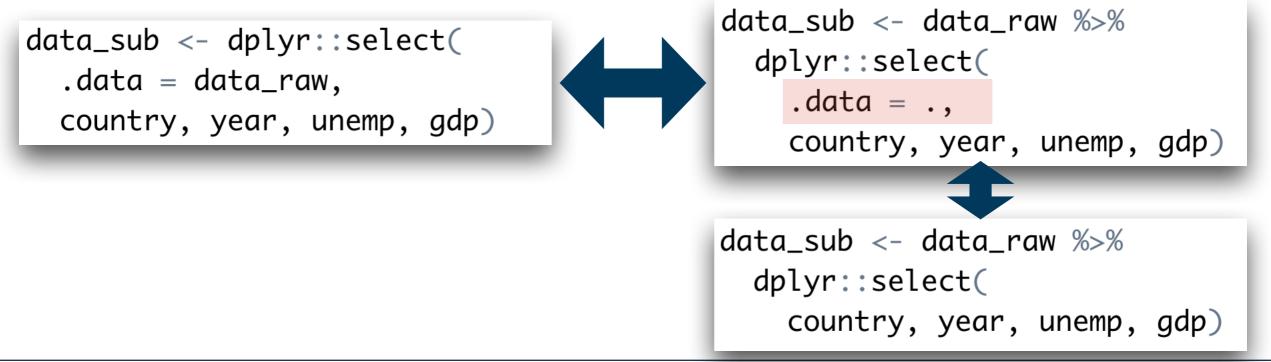
Using pipes

- While not strictly necessary, you can improve the usability and readability of your code using so called pipes: %>%
- Pipes take the result from their left and 'throw' them on the right
 - The thrown result can be referred to via .
 - Usually they are used at the end of a line and 'throw' the result of one line into the next one

```
data_sub <- dplyr::select(
  .data = data_raw,
  country, year, unemp, gdp)</pre>
data = data_raw %>%
data_sub <- data_raw %>%
dplyr::select(
  .data = .,
  country, year, unemp, gdp)
```


Using pipes

- While not strictly necessary, you can improve the usability and readability of your code using so called pipes: %>%
- Pipes take the result of one line and 'throw' them into the next line
 - The thrown result can be referred to via .
 - By default, the thrown result is used as the first argument of the function in the next line



Using pipes

• A more practical example:

```
chain_1 <- tidyr::pivot_longer(
  data = data_raw_wide,
  cols = c("gdp", "gini","unemp"),
  names_to = "indicator",
  values_to = "val")</pre>
```

```
chain_2 <- tidyr::pivot_wider(
  data = chain_1,
  names_from = "year",
  values_from = "val")</pre>
```

```
chain_complete <- pipe_data_raw %>%
 tidyr::pivot_longer(
   data = .,
   cols = c("gdp", "gini", "unemp"),
   names_to = "indicator",
   values_to = "val") %>%
 tidyr::pivot_wider(
   data = .,
   names_from = "year",
   values_from = "val")
```

- Pipes make code almost always easier to read \rightarrow desired stage at the end
- But is is usually easier make intermediate steps explicit during code development

Short recap on piping

- Explain what the pipe %>% does.
- When can the pipe be useful?

• Should you develop code with pipes right from the start? Why? Why not?

```
pipedata_v1 <- data.table::fread(here("data/recap2.csv"))</pre>
```

Rewrite the following code
 using pipes (data available via course page)

```
pipedata_v2 <- tidyr::pivot_longer(
   data = pipedata_v1,
    cols = c("lifeExp", "gdpPercap"),
   names_to = "Indicator",
   values_to = "Value")
pipedata_v3 <- tidyr::pivot_wider(</pre>
```

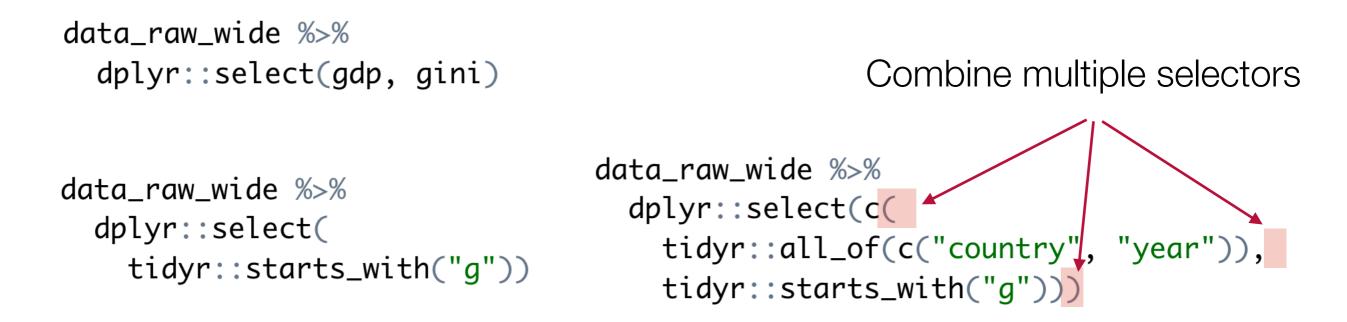
```
data = pipedata_v2,
names_from = "year",
values_from = "Value")
```

 Look at the introduction to the R package magrittr, which defines even more pipes: <u>https://magrittr.tidyverse.org/articles/magrittr.html</u>

Helpful tools II: Selection helpers

Digression: tidy selection helpers

- It can become tedious to select many columns using explicit reference to their names
- The tidy selection helpers are a useful tool to select columns based on common criteria:



• For a complete list of helpers see, e.g., the official reference

Exercise 1: filtering and reshaping

- Use the data set exercise_1.csv contained in wrangling_exercises_data.zip
- Import the data and ...
 - ...only consider data on Greece and Germany between 1995 and 2015
 - ...make it wider (and tidy)
 - ...save it in the subfolder data/ tidy/

A tibble: 42×4

	country	year	gdp	co2
	<chr></chr>	<int></int>	<db1></db1>	<db1></db1>
1	Germany	<u>1</u> 995	<u>39</u> 366.	10.7
2	Germany	<u>1</u> 996	<u>39</u> 569.	11.0
3	Germany	<u>1</u> 997	<u>40</u> 219.	10.6
4	Germany	<u>1</u> 998	<u>41</u> 023.	10.5
5	Germany	<u>1</u> 999	<u>41</u> 770.	10.2
6	Germany	<u>2</u> 000	<u>42</u> 928.	10.1
7	Germany	<u>2</u> 001	<u>43</u> 577.	10.3
8	Germany	<u>2</u> 002	<u>43</u> 417.	10.1
9	Germany	<u>2</u> 003	<u>43</u> 089.	10.1
10	Germany	<u>2</u> 004	<u>43</u> 605.	9.95

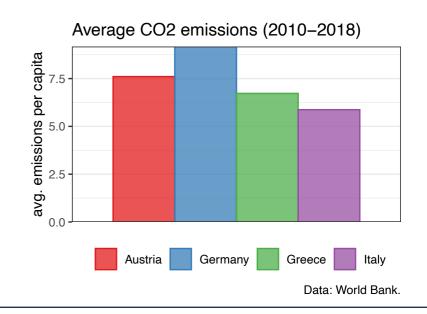
... with 32 more rows

Exercise 2: mutating, selecting & summarising

- Use the data set exercise_2.csv contained in wrangling_exercises_data.zip
- Import the data
 - Only keep the variables gdp, share_indus, and co2
 - Divide the industry share in GDP with 100
 - Only keep data between 2010 and 2018
 - Compute the averages over time for all countries
- Bonus:
 - Visualise the resulting CO2 average via a bar plot

		country	indicator	time_a∨g
		<chr></chr>	<chr></chr>	<db1></db1>
	1	Austria	co2	7.60
	2	Austria	gdp	<u>53</u> 322.
	3	Austria	share_indus	0.254
	4	Germany	co2	9.17
	5	Germany	gdp	<u>50</u> 781.
)	6	Germany	share_indus	0.272
	7	Greece	co2	6.72
	8	Greece	gdp	<u>29</u> 169.
	9	Greece	share_indus	0.144
	10	Italy	co2	5.87
	11	Italy	gdp	<u>41</u> 326.
	12	Italy	share_indus	0.213

A tibble: 12 × 3



Summary & outlook

Summary

- After importing raw data you usually must prepare them \rightarrow make **tidy**
- Tidy data is the input to any visualisation/modelling task and defined as data where:
 - Every **column** corresponds to one and only one **variable**
 - Every **row** corresponds to one and only one **observation**
 - Every **cell** corresponds to one and only one **value**
- It is usually a good idea to write a script that imports raw, and saves tidy data
- Such script usually makes use of functions from the following packages:
 - data.table, dplyr, tidyr, and here

- These packages provide functions that help you to address some wrangling challenges that regularly await you:
 - Reshaping data: tidyr::pivot_longer() and tidyr::pivot_wider()
 - Filtering rows: dplyr::filter()
 - Selecting columns: dplyr::select() and the select helpers
 - Mutating or creating variables: dplyr::mutate()
 - Grouping and summarising: dplyr::group_by() and dplyr::summarise()
 - Merging data sets: dplyr::*_join()
- In later sessions we will learn also about some convenience shortcuts

General recap questions

- What are the three demands a data set needs to fulfil to count as 'tidy'?
- Why do we care about tidy data at all?
- What is the relation between long and wide data sets?
- What are the six main routines of data preparation? What are they used for?
- What does 'data wrangling' mean?
- Which two packages are used most frequently in the context of data preparation? What are their respective areas of application?
- Explain what the pipe %>% does. When can the pipe be useful?

Data preparation is mainly about practice, so the practical exercises are particularly recommended 🚔 💂

